Electrocatalytic nitrate reduction reaction(NO3RR)represents a sustainable and environmentally benign route for ammonia(NH3)synthesis.However,NO3RR is still limited by the competition from hydrogen evolution reaction(...Electrocatalytic nitrate reduction reaction(NO3RR)represents a sustainable and environmentally benign route for ammonia(NH3)synthesis.However,NO3RR is still limited by the competition from hydrogen evolution reaction(HER)and the high energy barrier in the hydrogenation step of nitrogen-containing intermediates.Here,we report a selective etching strategy to construct Ru M nanoalloys(M=Fe,Co,Ni,Cu)uniformly dispersed on porous nitrogen-doped carbon substrates for efficient neutral NH3electrosynthesis.Density functional theory calculations confirm that the synergic effect between Ru and transition metal M modulates the electronic structure of the alloy,significantly lowering the energy barrier for the conversion of*NO_(2)to*HNO_(2).Experimentally,the optimized Ru Fe-NC catalyst achieves 100%Faraday efficiency with a high yield rate of 0.83 mg h^(-1)mg^(-1)catat a low potential of-0.1 V vs.RHE,outperforming most reported catalysts.In situ spectroscopic analyses further demonstrate that the Ru M-NC effectively promotes the hydrogenation of nitrogen intermediates while inhibiting the formation of hydrogen radicals,thereby reducing HER competition.The Ru FeNC assembled Zn-NO_(3)^(-)battery achieved a high open-circuit voltage and an outstanding power density and capacity,which drive selective NO_(3)^(-)conversion to NH3.This work provides a powerful synergistic design strategy for efficient NH3electrosynthesis and a general framework for the development of advanced multi-component catalysts for sustainable nitrogen conversion.展开更多
在“双碳”背景下,电制氨技术(renewable power to ammonia,RePtA)因能规模化消纳可再生能源与绿氢而受到广泛关注。然而,RePtA系统中可再生能源制氢量具有明显波动性,这对哈伯-博世合成氨工艺的稳定运行带来挑战。对此,提出了一种合成...在“双碳”背景下,电制氨技术(renewable power to ammonia,RePtA)因能规模化消纳可再生能源与绿氢而受到广泛关注。然而,RePtA系统中可再生能源制氢量具有明显波动性,这对哈伯-博世合成氨工艺的稳定运行带来挑战。对此,提出了一种合成氨离散多稳态柔性运行策略,并使用PSO-MILP算法建立了一个协同化工运行调度的容量配置两阶段优化模型,基于内蒙古某在建示范项目,对比分析了3种不同柔性方案的技术经济性能。研究表明:离散多稳态柔性策略相比传统稳态策略,经济性大幅度提高,年收益可增加6715万元;相比完全柔性策略,合成氨工艺的运行稳定性显著增强,生产负荷波动率降低了78.16%。该优化模型可以兼顾RePtA系统的投资经济性与运行安全性,其成果有望为实际生产运行提供一定指导。展开更多
Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles in...Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states.展开更多
与传统的合成氨工艺(Haber-Bosch法)相比,电催化还原硝酸盐合成氨技术具有可再生能源驱动、反应条件温和及无二次污染等优势。然而,该反应仍面临催化剂催化活性不足、产物选择性较低以及稳定性较差等挑战。采用水热法合成了不同铜铝比例...与传统的合成氨工艺(Haber-Bosch法)相比,电催化还原硝酸盐合成氨技术具有可再生能源驱动、反应条件温和及无二次污染等优势。然而,该反应仍面临催化剂催化活性不足、产物选择性较低以及稳定性较差等挑战。采用水热法合成了不同铜铝比例(n(Cu)/n(Al)=x=1.5、2或3)的铜铝水滑石(Cu_(x)Al-LDH),并对其进行了表征分析与电化学性能测试,系统探讨了铜铝比例、电解液中初始NO_(3)^(-)-N质量浓度、施加电位及光照条件对电催化还原硝酸盐合成氨的影响。结果表明,在电位为-0.6 V vs.RHE及初始NO_(3)^(-)-N质量浓度为500 mg/L条件下,Cu_(2)Al-LDH电极的法拉第效率达到98.2%,氨产率达到822.3μg/(h·cm^(2))。增加光照后,在相同条件下,Cu_(1.5)Al-LDH电极表现出更优的催化性能,理论法拉第效率达到150.5%,氨产率达到1149.1μg/(h·cm^(2))。此外,Cu_(2)Al-LDH和Cu_(1.5)Al-LDH电极分别在电催化和光辅助电催化条件下表现出优异的稳定性,持续反应10 h后仍能维持较高的法拉第效率。铜铝水滑石在电催化还原硝酸盐合成氨反应中表现出优异性能,具有应用于绿色合成氨的潜力。展开更多
基金financially supported by National Natural Science Foundation of China(22466010)Guizhou Provincial Basic Research Program(Natural Science)ZK[2023]47 and key program ZD[2025]075+6 种基金Innovation and Entrepreneurship Project for overseas Talents in Guizhou Province[2022]02Specific Natural Science Foundation of Guizhou University(X202207)the national undergraduate innovation and entrepreneurship training program(gzugc2023006gzusc2024012)SRT project of Guizhou university(2023SRT0292023SRT024)supported by Shanghai Technical Service Center of Science and Engineering Computing,Shanghai University。
文摘Electrocatalytic nitrate reduction reaction(NO3RR)represents a sustainable and environmentally benign route for ammonia(NH3)synthesis.However,NO3RR is still limited by the competition from hydrogen evolution reaction(HER)and the high energy barrier in the hydrogenation step of nitrogen-containing intermediates.Here,we report a selective etching strategy to construct Ru M nanoalloys(M=Fe,Co,Ni,Cu)uniformly dispersed on porous nitrogen-doped carbon substrates for efficient neutral NH3electrosynthesis.Density functional theory calculations confirm that the synergic effect between Ru and transition metal M modulates the electronic structure of the alloy,significantly lowering the energy barrier for the conversion of*NO_(2)to*HNO_(2).Experimentally,the optimized Ru Fe-NC catalyst achieves 100%Faraday efficiency with a high yield rate of 0.83 mg h^(-1)mg^(-1)catat a low potential of-0.1 V vs.RHE,outperforming most reported catalysts.In situ spectroscopic analyses further demonstrate that the Ru M-NC effectively promotes the hydrogenation of nitrogen intermediates while inhibiting the formation of hydrogen radicals,thereby reducing HER competition.The Ru FeNC assembled Zn-NO_(3)^(-)battery achieved a high open-circuit voltage and an outstanding power density and capacity,which drive selective NO_(3)^(-)conversion to NH3.This work provides a powerful synergistic design strategy for efficient NH3electrosynthesis and a general framework for the development of advanced multi-component catalysts for sustainable nitrogen conversion.
文摘在“双碳”背景下,电制氨技术(renewable power to ammonia,RePtA)因能规模化消纳可再生能源与绿氢而受到广泛关注。然而,RePtA系统中可再生能源制氢量具有明显波动性,这对哈伯-博世合成氨工艺的稳定运行带来挑战。对此,提出了一种合成氨离散多稳态柔性运行策略,并使用PSO-MILP算法建立了一个协同化工运行调度的容量配置两阶段优化模型,基于内蒙古某在建示范项目,对比分析了3种不同柔性方案的技术经济性能。研究表明:离散多稳态柔性策略相比传统稳态策略,经济性大幅度提高,年收益可增加6715万元;相比完全柔性策略,合成氨工艺的运行稳定性显著增强,生产负荷波动率降低了78.16%。该优化模型可以兼顾RePtA系统的投资经济性与运行安全性,其成果有望为实际生产运行提供一定指导。
基金National Natural Science Foundation of China (52371228, 52402045)fund of Key Laboratory of Advanced Materials of Ministry of Education(Advmat-2414)。
文摘Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states.
文摘与传统的合成氨工艺(Haber-Bosch法)相比,电催化还原硝酸盐合成氨技术具有可再生能源驱动、反应条件温和及无二次污染等优势。然而,该反应仍面临催化剂催化活性不足、产物选择性较低以及稳定性较差等挑战。采用水热法合成了不同铜铝比例(n(Cu)/n(Al)=x=1.5、2或3)的铜铝水滑石(Cu_(x)Al-LDH),并对其进行了表征分析与电化学性能测试,系统探讨了铜铝比例、电解液中初始NO_(3)^(-)-N质量浓度、施加电位及光照条件对电催化还原硝酸盐合成氨的影响。结果表明,在电位为-0.6 V vs.RHE及初始NO_(3)^(-)-N质量浓度为500 mg/L条件下,Cu_(2)Al-LDH电极的法拉第效率达到98.2%,氨产率达到822.3μg/(h·cm^(2))。增加光照后,在相同条件下,Cu_(1.5)Al-LDH电极表现出更优的催化性能,理论法拉第效率达到150.5%,氨产率达到1149.1μg/(h·cm^(2))。此外,Cu_(2)Al-LDH和Cu_(1.5)Al-LDH电极分别在电催化和光辅助电催化条件下表现出优异的稳定性,持续反应10 h后仍能维持较高的法拉第效率。铜铝水滑石在电催化还原硝酸盐合成氨反应中表现出优异性能,具有应用于绿色合成氨的潜力。