近年来,随着深度学习技术的飞速发展,基于大规模预训练的语言模型(large language model, LLM)在自然语言处理领域取得了前所未有的突破,并且在代码生成、软件测试、程序分析与优化等软件工程任务中展现出强大的潜力与广泛的应用前景....近年来,随着深度学习技术的飞速发展,基于大规模预训练的语言模型(large language model, LLM)在自然语言处理领域取得了前所未有的突破,并且在代码生成、软件测试、程序分析与优化等软件工程任务中展现出强大的潜力与广泛的应用前景.作为具备深度语义理解与生成能力的通用人工智能模型,大语言模型的崛起正在重新定义传统的软件质量保障方法,为软件工程的自动化和智能化注入了新的活力.同时,软件质量保障作为确保软件系统在功能性、性能、可靠性和安全性等方面满足设计规范和用户期望的关键环节,其传统方法难以适应现代软件系统日益增长的规模与复杂性.特别是在开源软件、企业级应用和芯片设计程序等高度复杂的应用场景中,传统方法的自动化与智能化程度难以满足实际需求.展开更多
面向开源项目推荐开发人员对开源生态建设具有重要意义。区别于传统软件开发,开源领域的开发者、项目、组织及相互关系体现了开放式协作项目的特点,而它们蕴含的语义有助于精准推荐开源项目的开发者。因此,提出一种基于协作贡献网络(CCN...面向开源项目推荐开发人员对开源生态建设具有重要意义。区别于传统软件开发,开源领域的开发者、项目、组织及相互关系体现了开放式协作项目的特点,而它们蕴含的语义有助于精准推荐开源项目的开发者。因此,提出一种基于协作贡献网络(CCN)的开发者推荐(DRCCN)方法。首先,利用开源软件(OSS)开发者、OSS项目、OSS组织之间的贡献关系构建CCN;其次,基于CCN构建一个3层深度的异构GraphSAGE(Graph SAmple and aggreGatE)图神经网络(GNN)模型,预测开发者节点和开源项目节点之间的链接,从而产生相应的嵌入对;最后,根据预测结果,采用K最近邻(KNN)算法完成开发者推荐。在GitHub数据集上训练和测试模型的实验结果表明,相较于序列推荐的对比学习模型CL4SRec(Contrastive Learning for Sequential Recommendation),DRCCN在精确率、召回率和F1值这3个指标上分别提升了约10.7%、2.6%和4.2%。因此,所提模型可以为开源社区项目的开发者推荐提供重要的参考依据。展开更多
文摘近年来,随着深度学习技术的飞速发展,基于大规模预训练的语言模型(large language model, LLM)在自然语言处理领域取得了前所未有的突破,并且在代码生成、软件测试、程序分析与优化等软件工程任务中展现出强大的潜力与广泛的应用前景.作为具备深度语义理解与生成能力的通用人工智能模型,大语言模型的崛起正在重新定义传统的软件质量保障方法,为软件工程的自动化和智能化注入了新的活力.同时,软件质量保障作为确保软件系统在功能性、性能、可靠性和安全性等方面满足设计规范和用户期望的关键环节,其传统方法难以适应现代软件系统日益增长的规模与复杂性.特别是在开源软件、企业级应用和芯片设计程序等高度复杂的应用场景中,传统方法的自动化与智能化程度难以满足实际需求.
文摘面向开源项目推荐开发人员对开源生态建设具有重要意义。区别于传统软件开发,开源领域的开发者、项目、组织及相互关系体现了开放式协作项目的特点,而它们蕴含的语义有助于精准推荐开源项目的开发者。因此,提出一种基于协作贡献网络(CCN)的开发者推荐(DRCCN)方法。首先,利用开源软件(OSS)开发者、OSS项目、OSS组织之间的贡献关系构建CCN;其次,基于CCN构建一个3层深度的异构GraphSAGE(Graph SAmple and aggreGatE)图神经网络(GNN)模型,预测开发者节点和开源项目节点之间的链接,从而产生相应的嵌入对;最后,根据预测结果,采用K最近邻(KNN)算法完成开发者推荐。在GitHub数据集上训练和测试模型的实验结果表明,相较于序列推荐的对比学习模型CL4SRec(Contrastive Learning for Sequential Recommendation),DRCCN在精确率、召回率和F1值这3个指标上分别提升了约10.7%、2.6%和4.2%。因此,所提模型可以为开源社区项目的开发者推荐提供重要的参考依据。