基于电子科技大学与中国电子科技集团第十三研究所自主联合设计的肖特基二极管研制宽带360~440 GHz分谐波混频器。详细描述二极管建模,以模拟在极高频复杂电磁环境中由于二极管结构引入的相关寄生效应.在软件HFSS与ADS中,通过场与路结...基于电子科技大学与中国电子科技集团第十三研究所自主联合设计的肖特基二极管研制宽带360~440 GHz分谐波混频器。详细描述二极管建模,以模拟在极高频复杂电磁环境中由于二极管结构引入的相关寄生效应.在软件HFSS与ADS中,通过场与路结合的方法对分谐波混频器进行优化.实测结果显示在本振信号为210 GHz本振功率6 d Bm的驱动下,在406 GHz可得到最小变频损耗9.99 d B,在380~430 GHz范围内,变频损耗小于15 d B,在360~440 GHz范围内,变频损耗小于19 d B.展开更多
In order to improve the bandwidth of the conventional sub-harmonic mixer, a broad-band, high intermediate frequency(IF) sub-harmonic mixer for W-band applications is proposed. Replacing the open and short stubs that...In order to improve the bandwidth of the conventional sub-harmonic mixer, a broad-band, high intermediate frequency(IF) sub-harmonic mixer for W-band applications is proposed. Replacing the open and short stubs that are used in the convertional sub-harmonic mixer with a broad-band band-pass filter and a low-pass filter, respectively, a wide operating frequency band is achieved. Furthermore, without the use of the edge-coupled band-pass filter at radio frequency(RF) port, the proposed structure can be realized by common hybrid microwave integrated circuit technology at W- band. The measured results show that the proposed subharmonic mixer can operate from 80 to 107.5 GHz for RF frequency and support up to 18 GHz for the IF bandwidth. Also, the measured results show that the single-sideband conversion loss is less than 13. 7 dB over the available RF frequency band, while the minimum conversion loss is about 9 dB at an RF of 92. 5 GHz and an 1F of 3 GHz. Thus, a large operating bandwidth performance at W-band can be achieved by the orooosed mixer.展开更多
文摘基于电子科技大学与中国电子科技集团第十三研究所自主联合设计的肖特基二极管研制宽带360~440 GHz分谐波混频器。详细描述二极管建模,以模拟在极高频复杂电磁环境中由于二极管结构引入的相关寄生效应.在软件HFSS与ADS中,通过场与路结合的方法对分谐波混频器进行优化.实测结果显示在本振信号为210 GHz本振功率6 d Bm的驱动下,在406 GHz可得到最小变频损耗9.99 d B,在380~430 GHz范围内,变频损耗小于15 d B,在360~440 GHz范围内,变频损耗小于19 d B.
基金Research Foundation of China ( No.9140A01020209JW0601)
文摘In order to improve the bandwidth of the conventional sub-harmonic mixer, a broad-band, high intermediate frequency(IF) sub-harmonic mixer for W-band applications is proposed. Replacing the open and short stubs that are used in the convertional sub-harmonic mixer with a broad-band band-pass filter and a low-pass filter, respectively, a wide operating frequency band is achieved. Furthermore, without the use of the edge-coupled band-pass filter at radio frequency(RF) port, the proposed structure can be realized by common hybrid microwave integrated circuit technology at W- band. The measured results show that the proposed subharmonic mixer can operate from 80 to 107.5 GHz for RF frequency and support up to 18 GHz for the IF bandwidth. Also, the measured results show that the single-sideband conversion loss is less than 13. 7 dB over the available RF frequency band, while the minimum conversion loss is about 9 dB at an RF of 92. 5 GHz and an 1F of 3 GHz. Thus, a large operating bandwidth performance at W-band can be achieved by the orooosed mixer.