故障树分析法(Fault Tree Analysis,FTA),是一种将系统失效形成的原因由总体至部分按树枝状逐级细化的分析方法,可以简化系统结构,降低可靠性及重要度的计算复杂程度。文中以共因失效系统(Common Cause Failure System,CCF)作为研究对象...故障树分析法(Fault Tree Analysis,FTA),是一种将系统失效形成的原因由总体至部分按树枝状逐级细化的分析方法,可以简化系统结构,降低可靠性及重要度的计算复杂程度。文中以共因失效系统(Common Cause Failure System,CCF)作为研究对象,基于FTA方法,给出了系统结构通过各种不同的逻辑门(与门、或门、非门等)转化为故障树的表示方法,并提出了基于故障树的系统可靠性和Birnbaum重要度的隐式替代算法,最后针对串联和并联案例分别进行了系统可靠性及Birnbaum重要度的计算,结果验证了基于故障树方法计算系统可靠性和重要度的可行性。展开更多
A DC to 5GHz series MEMS switch is designed and fabricated for wireless communication applications,and thermal effect and power handling of the series switch are discussed.The switch is made on glass substrate,and gol...A DC to 5GHz series MEMS switch is designed and fabricated for wireless communication applications,and thermal effect and power handling of the series switch are discussed.The switch is made on glass substrate,and gold platinum contact is used to get a stable and little insert loss.From DC to 5GHz,0 6dB insertion loss,30dB isolation,and 30μs delay are demonstrated.Thermal effect of the switch is tested in 85℃ and -55℃ atmosphere separately.From DC to 4GHz,the insert loss of the switch increases 0 2dB in 85℃ and 0 4dB in -55℃,while the isolation holds the same value as that in room temperature.To measure the power handling capability of the switch,we applied a continuous RF power increasing from 10dBm to 35 1dBm with the step of 1 0dBm across the switch at 4GHz.The switch keeps working and shows a decrease of the insert loss for 0 1~0 6dB.The maximum continuous power handling (35 1dBm,about 3 24W) is higer than the reported value of shunt switch (about 420mW),which implies series switches have much better power handling capability.展开更多
文摘故障树分析法(Fault Tree Analysis,FTA),是一种将系统失效形成的原因由总体至部分按树枝状逐级细化的分析方法,可以简化系统结构,降低可靠性及重要度的计算复杂程度。文中以共因失效系统(Common Cause Failure System,CCF)作为研究对象,基于FTA方法,给出了系统结构通过各种不同的逻辑门(与门、或门、非门等)转化为故障树的表示方法,并提出了基于故障树的系统可靠性和Birnbaum重要度的隐式替代算法,最后针对串联和并联案例分别进行了系统可靠性及Birnbaum重要度的计算,结果验证了基于故障树方法计算系统可靠性和重要度的可行性。
文摘A DC to 5GHz series MEMS switch is designed and fabricated for wireless communication applications,and thermal effect and power handling of the series switch are discussed.The switch is made on glass substrate,and gold platinum contact is used to get a stable and little insert loss.From DC to 5GHz,0 6dB insertion loss,30dB isolation,and 30μs delay are demonstrated.Thermal effect of the switch is tested in 85℃ and -55℃ atmosphere separately.From DC to 4GHz,the insert loss of the switch increases 0 2dB in 85℃ and 0 4dB in -55℃,while the isolation holds the same value as that in room temperature.To measure the power handling capability of the switch,we applied a continuous RF power increasing from 10dBm to 35 1dBm with the step of 1 0dBm across the switch at 4GHz.The switch keeps working and shows a decrease of the insert loss for 0 1~0 6dB.The maximum continuous power handling (35 1dBm,about 3 24W) is higer than the reported value of shunt switch (about 420mW),which implies series switches have much better power handling capability.