由于传统的互补金属-氧化物-半导体(Complementary Metal Oxide Semiconductor,CMOS)神经元电路与生物学的契合性较差且电路复杂,提出了一种基于忆阻器的多端口输入的泄露-整合-激发(Leaky-Integrate-Fire,LIF)神经元电路。该电路由运...由于传统的互补金属-氧化物-半导体(Complementary Metal Oxide Semiconductor,CMOS)神经元电路与生物学的契合性较差且电路复杂,提出了一种基于忆阻器的多端口输入的泄露-整合-激发(Leaky-Integrate-Fire,LIF)神经元电路。该电路由运放、逻辑门等器件以及忆阻器构成,主要分为信号叠加模块和神经元信号产生模块。通过施加多个双尖峰脉冲信号并调节输入信号的数量和频率,模拟了生物神经元受到的不同程度刺激。研究发现施加到神经元上信号的数量和频率达到一定的值,神经元电路才会输出电压信号,这与生物体中只有受到一定程度的刺激时才会做出反应的现象是一致的。进一步,调节该电路中神经元信号产生模块的阈值电压大小,研究发现输入相同的信号,只有当电路的阈值电压较低时,神经元电路才能输出电压信号,这与生物中不同部位受到相同的刺激,神经元兴奋程度越高,越容易做出反应的现象一致。由此,该文所提出的LIF神经元电路不仅解决了传统电路输入信号单一、输入信号波形与生物信号波形差异大等问题,而且能模拟生物神经元的兴奋程度,这为人工神经网络的设计提供理论依据。展开更多
电子自旋属性的自旋电子器件,由于其低能耗、高效率和强稳定性等特点,在磁性存储和计算技术的发展中发挥了重大作用。而如何以一种高能效、确定性和可扩展的方式对作为信息载体的磁性进行操控,这个重要问题在自旋电子学领域引起了利用...电子自旋属性的自旋电子器件,由于其低能耗、高效率和强稳定性等特点,在磁性存储和计算技术的发展中发挥了重大作用。而如何以一种高能效、确定性和可扩展的方式对作为信息载体的磁性进行操控,这个重要问题在自旋电子学领域引起了利用电流操控磁化翻转的广泛研究。本文综述了利用自旋极化电流和纯自旋流操控磁化翻转的研究背景、重要工作和最新进展,详细介绍了自旋转移矩(spin transfer torque,STT)和自旋轨道矩(spinorbit torque,SOT)的产生和作用机制,重点阐述了利用SOT驱动磁畴壁运动和垂直磁化翻转,以及无外磁场磁化翻转的原理。最后探讨了SOT在人工合成反铁磁(synthetic antiferromagnet,SAF)结构中驱动的磁化翻转,为人工合成反铁磁体作为磁性随机访问存储器(magnetic random access memory,MRAM)的应用提供了重要基础,同时也为纯电流操控的自旋电子存储器件相关研究提供了有价值的参考。展开更多
文摘由于传统的互补金属-氧化物-半导体(Complementary Metal Oxide Semiconductor,CMOS)神经元电路与生物学的契合性较差且电路复杂,提出了一种基于忆阻器的多端口输入的泄露-整合-激发(Leaky-Integrate-Fire,LIF)神经元电路。该电路由运放、逻辑门等器件以及忆阻器构成,主要分为信号叠加模块和神经元信号产生模块。通过施加多个双尖峰脉冲信号并调节输入信号的数量和频率,模拟了生物神经元受到的不同程度刺激。研究发现施加到神经元上信号的数量和频率达到一定的值,神经元电路才会输出电压信号,这与生物体中只有受到一定程度的刺激时才会做出反应的现象是一致的。进一步,调节该电路中神经元信号产生模块的阈值电压大小,研究发现输入相同的信号,只有当电路的阈值电压较低时,神经元电路才能输出电压信号,这与生物中不同部位受到相同的刺激,神经元兴奋程度越高,越容易做出反应的现象一致。由此,该文所提出的LIF神经元电路不仅解决了传统电路输入信号单一、输入信号波形与生物信号波形差异大等问题,而且能模拟生物神经元的兴奋程度,这为人工神经网络的设计提供理论依据。
文摘电子自旋属性的自旋电子器件,由于其低能耗、高效率和强稳定性等特点,在磁性存储和计算技术的发展中发挥了重大作用。而如何以一种高能效、确定性和可扩展的方式对作为信息载体的磁性进行操控,这个重要问题在自旋电子学领域引起了利用电流操控磁化翻转的广泛研究。本文综述了利用自旋极化电流和纯自旋流操控磁化翻转的研究背景、重要工作和最新进展,详细介绍了自旋转移矩(spin transfer torque,STT)和自旋轨道矩(spinorbit torque,SOT)的产生和作用机制,重点阐述了利用SOT驱动磁畴壁运动和垂直磁化翻转,以及无外磁场磁化翻转的原理。最后探讨了SOT在人工合成反铁磁(synthetic antiferromagnet,SAF)结构中驱动的磁化翻转,为人工合成反铁磁体作为磁性随机访问存储器(magnetic random access memory,MRAM)的应用提供了重要基础,同时也为纯电流操控的自旋电子存储器件相关研究提供了有价值的参考。