The accumulation of^(222)Rn and^(220)Rn progeny in poorly ventilated environments poses the risk of natural radiation exposure to the public.A previous study indicated that satisfactory results in determining the^(222...The accumulation of^(222)Rn and^(220)Rn progeny in poorly ventilated environments poses the risk of natural radiation exposure to the public.A previous study indicated that satisfactory results in determining the^(222)Rn and^(220)Rn progeny concentrations by measuring the total alpha counts at five time intervals within 560 min should be expected only in the case of high progeny concentrations in air.To complete the measurement within a relatively short period and adapt it for simultaneous measurements at comparatively lower^(222)Rn and^(220)Rn progeny concentrations,a novel mathematical model was proposed based on the radioactive decay law.This model employs a nonlinear fitting method to distinguish nuclides with overlapping spectra by utilizing the alpha particle counts of non-overlapping spectra within consecutive measurement cycles to obtain the concentrations of^(222)Rn and^(220)Rn progeny in air.Several verification experiments were conducted using an alpha spectrometer.The experimental results demonstrate that the concentrations of^(222)Rn and^(220)Rn progeny calculated by the new method align more closely with the actual circumstances than those calculated by the total count method,and their relative uncertainties are all within±16%.Furthermore,the measurement time was reduced to 90 min,representing an acceleration of 84%.The improved capability of the new method in distinguishing alpha particles with similar energies emitted from ^(218)Po and^(212)Bi,both approximately 6 MeV,contributed to realizing more accurate results.The proposed method has the potential advantage of measuring relatively low concentrations of^(222)Rn and^(220)Rn progeny in air more quickly via air filtration.展开更多
In current neural network algorithms for nuclide identification in high-background,poor-resolution detectors,traditional network paradigms including back-propagation networks,convolutional neural networks,recurrent ne...In current neural network algorithms for nuclide identification in high-background,poor-resolution detectors,traditional network paradigms including back-propagation networks,convolutional neural networks,recurrent neural networks,etc.,have been limited in research on γ spectrum analysis because of their inherent mathematical mechanisms.It is difficult to make progress in terms of training data requirements and prediction accuracy.In contrast to traditional network paradigms,network models based on the transformer structure have the characteristics of parallel computing,position encoding,and deep stacking,which have enabled good performance in natural language processing tasks in recent years.Therefore,in this paper,a transformer-based neural network (TBNN) model is proposed to achieve nuclide identification for the first time.First,the Geant4 program was used to generate the basic single-nuclide energy spectrum through Monte Carlo simulations.A multi-nuclide energy spectrum database was established for neural network training using random matrices of γ-ray energy,activity,and noise.Based on the encoder–decoder structure,a network topology based on the transformer was built,transforming the 1024-channel energy spectrum data into a 32×32 energy spectrum sequence as the model input.Through experiments and adjustments of model parameters,including the learning rate of the TBNN model,number of attention heads,and number of network stacking layers,the overall recognition rate reached 98.7%.Additionally,this database was used for training AI models such as back-propagation networks,convolutional neural networks,residual networks,and long shortterm memory neural networks,with overall recognition rates of 92.8%,95.3%,96.3%,and 96.6%,respectively.This indicates that the TBNN model exhibited better nuclide identification among these AI models,providing an important reference and theoretical basis for the practical application of transformers in the qualitative and quantitative analysis of the γ spectrum.展开更多
Correction to:Nuclear Science and Techniques(2024)36:8 https://doi.org/10.1007/s41365-024-01570-7 In this article the affiliation details for Author Jian Shan were incorrectly given as‘College of Physics and Electron...Correction to:Nuclear Science and Techniques(2024)36:8 https://doi.org/10.1007/s41365-024-01570-7 In this article the affiliation details for Author Jian Shan were incorrectly given as‘College of Physics and Electronic Engi-neering,Hengyang Normal University,Hengyang 421008,China’but should have been‘School of Nuclear Science and Technology,University of South China,Hengyang 421001,China’.The original article has been corrected.展开更多
To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resul...To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resulting in an extremely low detection limit and improving the measurement accuracy.However,the complex and expensive hardware required does not facilitate the application or promotion of this method.Thus,a method is proposed in this study to discriminate the digital waveform of pulse signals output using an HPGe detector,whereby Compton scattering background is suppressed and a low minimum detectable activity(MDA)is achieved without using an expensive and complex anticoincidence detector and device.The electric-field-strength and energy-deposition distributions of the detector are simulated to determine the relationship between pulse shape and energy-deposition location,as well as the characteristics of energy-deposition distributions for fulland partial-energy deposition events.This relationship is used to develop a pulse-shape-discrimination algorithm based on an artificial neural network for pulse-feature identification.To accurately determine the relationship between the deposited energy of gamma(γ)rays in the detector and the deposition location,we extract four shape parameters from the pulse signals output by the detector.Machine learning is used to input the four shape parameters into the detector.Subsequently,the pulse signals are identified and classified to discriminate between partial-and full-energy deposition events.Some partial-energy deposition events are removed to suppress Compton scattering.The proposed method effectively decreases the MDA of an HPGeγ-energy dispersive spectrometer.Test results show that the Compton suppression factors for energy spectra obtained from measurements on ^(152)Eu,^(137)Cs,and ^(60)Co radioactive sources are 1.13(344 keV),1.11(662 keV),and 1.08(1332 keV),respectively,and that the corresponding MDAs are 1.4%,5.3%,and 21.6%lower,respectively.展开更多
Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are d...Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.展开更多
基金supported by the National Natural Science Foundation of China(No.12075112)Natural Science Foundation of Hunan(No.2023JJ50121),Natural Science Foundation of Hunan Province(No.2023JJ50091)Key Projects of Hunan Provincial Department of Education(No.23A0516).
文摘The accumulation of^(222)Rn and^(220)Rn progeny in poorly ventilated environments poses the risk of natural radiation exposure to the public.A previous study indicated that satisfactory results in determining the^(222)Rn and^(220)Rn progeny concentrations by measuring the total alpha counts at five time intervals within 560 min should be expected only in the case of high progeny concentrations in air.To complete the measurement within a relatively short period and adapt it for simultaneous measurements at comparatively lower^(222)Rn and^(220)Rn progeny concentrations,a novel mathematical model was proposed based on the radioactive decay law.This model employs a nonlinear fitting method to distinguish nuclides with overlapping spectra by utilizing the alpha particle counts of non-overlapping spectra within consecutive measurement cycles to obtain the concentrations of^(222)Rn and^(220)Rn progeny in air.Several verification experiments were conducted using an alpha spectrometer.The experimental results demonstrate that the concentrations of^(222)Rn and^(220)Rn progeny calculated by the new method align more closely with the actual circumstances than those calculated by the total count method,and their relative uncertainties are all within±16%.Furthermore,the measurement time was reduced to 90 min,representing an acceleration of 84%.The improved capability of the new method in distinguishing alpha particles with similar energies emitted from ^(218)Po and^(212)Bi,both approximately 6 MeV,contributed to realizing more accurate results.The proposed method has the potential advantage of measuring relatively low concentrations of^(222)Rn and^(220)Rn progeny in air more quickly via air filtration.
基金supported by the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province(Nos.2024NSFSC0422,23NSFSCC0116)Nuclear Energy Development Project(No.[2021]-88).
文摘In current neural network algorithms for nuclide identification in high-background,poor-resolution detectors,traditional network paradigms including back-propagation networks,convolutional neural networks,recurrent neural networks,etc.,have been limited in research on γ spectrum analysis because of their inherent mathematical mechanisms.It is difficult to make progress in terms of training data requirements and prediction accuracy.In contrast to traditional network paradigms,network models based on the transformer structure have the characteristics of parallel computing,position encoding,and deep stacking,which have enabled good performance in natural language processing tasks in recent years.Therefore,in this paper,a transformer-based neural network (TBNN) model is proposed to achieve nuclide identification for the first time.First,the Geant4 program was used to generate the basic single-nuclide energy spectrum through Monte Carlo simulations.A multi-nuclide energy spectrum database was established for neural network training using random matrices of γ-ray energy,activity,and noise.Based on the encoder–decoder structure,a network topology based on the transformer was built,transforming the 1024-channel energy spectrum data into a 32×32 energy spectrum sequence as the model input.Through experiments and adjustments of model parameters,including the learning rate of the TBNN model,number of attention heads,and number of network stacking layers,the overall recognition rate reached 98.7%.Additionally,this database was used for training AI models such as back-propagation networks,convolutional neural networks,residual networks,and long shortterm memory neural networks,with overall recognition rates of 92.8%,95.3%,96.3%,and 96.6%,respectively.This indicates that the TBNN model exhibited better nuclide identification among these AI models,providing an important reference and theoretical basis for the practical application of transformers in the qualitative and quantitative analysis of the γ spectrum.
文摘Correction to:Nuclear Science and Techniques(2024)36:8 https://doi.org/10.1007/s41365-024-01570-7 In this article the affiliation details for Author Jian Shan were incorrectly given as‘College of Physics and Electronic Engi-neering,Hengyang Normal University,Hengyang 421008,China’but should have been‘School of Nuclear Science and Technology,University of South China,Hengyang 421001,China’.The original article has been corrected.
基金This work was supported by the National Key R&D Program of China(Nos.2022YFF0709503,2022YFB1902700,2017YFC0602101)the Key Research and Development Program of Sichuan province(No.2023YFG0347)the Key Research and Development Program of Sichuan province(No.2020ZDZX0007).
文摘To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resulting in an extremely low detection limit and improving the measurement accuracy.However,the complex and expensive hardware required does not facilitate the application or promotion of this method.Thus,a method is proposed in this study to discriminate the digital waveform of pulse signals output using an HPGe detector,whereby Compton scattering background is suppressed and a low minimum detectable activity(MDA)is achieved without using an expensive and complex anticoincidence detector and device.The electric-field-strength and energy-deposition distributions of the detector are simulated to determine the relationship between pulse shape and energy-deposition location,as well as the characteristics of energy-deposition distributions for fulland partial-energy deposition events.This relationship is used to develop a pulse-shape-discrimination algorithm based on an artificial neural network for pulse-feature identification.To accurately determine the relationship between the deposited energy of gamma(γ)rays in the detector and the deposition location,we extract four shape parameters from the pulse signals output by the detector.Machine learning is used to input the four shape parameters into the detector.Subsequently,the pulse signals are identified and classified to discriminate between partial-and full-energy deposition events.Some partial-energy deposition events are removed to suppress Compton scattering.The proposed method effectively decreases the MDA of an HPGeγ-energy dispersive spectrometer.Test results show that the Compton suppression factors for energy spectra obtained from measurements on ^(152)Eu,^(137)Cs,and ^(60)Co radioactive sources are 1.13(344 keV),1.11(662 keV),and 1.08(1332 keV),respectively,and that the corresponding MDAs are 1.4%,5.3%,and 21.6%lower,respectively.
基金supported by the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province of China(Project No.2023NSFSC0008)+1 种基金Uranium Geology Program of China Nuclear Geology(No.202205-6)the Sichuan Science and Technology Program(No.2021JDTD0018)。
文摘Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.