With the development of large numbers broadband Internet access,global satellite communications is moving towards High Throughput Satellites(HTS).Now,USA,Canada,Europe,Thailand,Japan,United Arab Emirates,Australia hav...With the development of large numbers broadband Internet access,global satellite communications is moving towards High Throughput Satellites(HTS).Now,USA,Canada,Europe,Thailand,Japan,United Arab Emirates,Australia have already developed HTS systems.However,there is little research to analyze the factors influencing high throughput.Thus,from the design perspective,the throughput of HTS and influencing factors are calculated and compared at a system level.Finally,the application of HTS is analyzed and forecasted.展开更多
Cellular spheroids serving as three-dimensional(3D) in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular...Cellular spheroids serving as three-dimensional(3D) in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cellembedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.展开更多
We label-free detected the biological process of preparing a microarray that includes 400 spots of mouse immunoglobulin G (IgG) as well as the specific hybridization between mouse IgG and goat anti-mouse IgG by an o...We label-free detected the biological process of preparing a microarray that includes 400 spots of mouse immunoglobulin G (IgG) as well as the specific hybridization between mouse IgG and goat anti-mouse IgG by an oblique-incidence reflectivity difference (OI-RD) method. The detection results after each process including printing, washing, blocking, and hybridization, demonstrate that the OI-RD method can trace the preparation process of a microarray and detect the specific hybridization between antigens and antibodies. OI-RD is a promising method for label-free and high-throughput detection of biological microarrays.展开更多
Acetylcholinesterase (ACHE) plays a vital role in the nervous system of insects and other animal species and serves as the target for many chemical agents such as organophosphate and carbamate insecticides. The mosq...Acetylcholinesterase (ACHE) plays a vital role in the nervous system of insects and other animal species and serves as the target for many chemical agents such as organophosphate and carbamate insecticides. The mosquito, Culex pipiens complex, a vector of human disease, has evolved to be resistant to insecticides by a limited number of amino acid substitutions in ACHE1, which is encoded by the ace-1 gene. The aims of this study are to identify single nucleotide polymorphism (SNP) sites in the ace-1 gene of the C. pipiens complex and explore an economical high-throughput method to differentiate the genotypes of these sites in mosquitoes collected in the field. We identified 22 SNP sites in exon regions of the ace-1 gene. Four of them led to non-synonymous mutations, that is, Y163C, G247S, C677S and T682A. We used matrix-assisted laser desorption ionization - time-of-flight mass spectrometry for genotyping at these four sites and another site F416V, which was relevant to insecticide resistance, in 150 mosquitoes collected from 15 field populations. We were able to synchronize analysis of the five SNP sites in each well of a 384-well plate for each individual mosquito, thus decreasing the cost to one-fifth of the routine analysis. Heterozygous genotypes at Y163C and G247S sites were observed in one mosquito. The possible influence of the five SNP sites on the activity or function of the enzyme is discussed based on the predicted tertiary structure of the enzyme.展开更多
文摘With the development of large numbers broadband Internet access,global satellite communications is moving towards High Throughput Satellites(HTS).Now,USA,Canada,Europe,Thailand,Japan,United Arab Emirates,Australia have already developed HTS systems.However,there is little research to analyze the factors influencing high throughput.Thus,from the design perspective,the throughput of HTS and influencing factors are calculated and compared at a system level.Finally,the application of HTS is analyzed and forecasted.
基金supported by the National Natural Science Foundation of China (11372243, 11532009, and 11522219)the China Postdoctoral Science Foundation (2013M540742)+2 种基金the Doctoral Program of Higher Education of China (20130201120071)the Natural Science Basic Research Plan in Shaanxi Province of China (2014JQ1004)the Fun- damental Research Funds for the Central Universities
文摘Cellular spheroids serving as three-dimensional(3D) in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cellembedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.
文摘We label-free detected the biological process of preparing a microarray that includes 400 spots of mouse immunoglobulin G (IgG) as well as the specific hybridization between mouse IgG and goat anti-mouse IgG by an oblique-incidence reflectivity difference (OI-RD) method. The detection results after each process including printing, washing, blocking, and hybridization, demonstrate that the OI-RD method can trace the preparation process of a microarray and detect the specific hybridization between antigens and antibodies. OI-RD is a promising method for label-free and high-throughput detection of biological microarrays.
文摘Acetylcholinesterase (ACHE) plays a vital role in the nervous system of insects and other animal species and serves as the target for many chemical agents such as organophosphate and carbamate insecticides. The mosquito, Culex pipiens complex, a vector of human disease, has evolved to be resistant to insecticides by a limited number of amino acid substitutions in ACHE1, which is encoded by the ace-1 gene. The aims of this study are to identify single nucleotide polymorphism (SNP) sites in the ace-1 gene of the C. pipiens complex and explore an economical high-throughput method to differentiate the genotypes of these sites in mosquitoes collected in the field. We identified 22 SNP sites in exon regions of the ace-1 gene. Four of them led to non-synonymous mutations, that is, Y163C, G247S, C677S and T682A. We used matrix-assisted laser desorption ionization - time-of-flight mass spectrometry for genotyping at these four sites and another site F416V, which was relevant to insecticide resistance, in 150 mosquitoes collected from 15 field populations. We were able to synchronize analysis of the five SNP sites in each well of a 384-well plate for each individual mosquito, thus decreasing the cost to one-fifth of the routine analysis. Heterozygous genotypes at Y163C and G247S sites were observed in one mosquito. The possible influence of the five SNP sites on the activity or function of the enzyme is discussed based on the predicted tertiary structure of the enzyme.