Modern aero and stationary gas turbine engines have been designed with much higher compressor-pressure ratios and thrust-weight ratios than earlier models,and these ratios are strongly influenced by the hot-running cl...Modern aero and stationary gas turbine engines have been designed with much higher compressor-pressure ratios and thrust-weight ratios than earlier models,and these ratios are strongly influenced by the hot-running clearances between the rotating and stationary components.The main benefit of reduction in the clearances is efficiency gains,resulting in lowered fuel consumption and polluting gas emissions,with ecological and economic advantages.However,at these undersized clearances,some rubbing interactions are unavoidable,which can be accommodated by applying Abradable Sealing Coatings(ASCs)on the stationary inner surface.This paper reviews the commercially available abradable materials for thermal spraying at various application positions and temperatures.Emphasis is placed on the abradability and wear mechanisms involved.In addition,considering the tendency of SiC/SiC ceramic matrix composites replacing superalloys as hot section components,the future prospect of ceramic abradables based on Environmental Barrier Coatings(EBCs)in turbine stages is summarized and a new concept of"self-degradable ceramics"based on the corrosive steam environment is proposed for the purpose of high-temperature fillerfree abradables.展开更多
Thermal barrier coatings(TBCs) usually exhibit an uncertain lifetime owing to their scattering mechanical properties and severe service conditions. To consider these uncertainties, a reliability assessment method is...Thermal barrier coatings(TBCs) usually exhibit an uncertain lifetime owing to their scattering mechanical properties and severe service conditions. To consider these uncertainties, a reliability assessment method is proposed based on failure probability analysis. First, a limit state equation is established to demarcate the boundary between failure and safe regions, and then the failure probability is calculated by the integration of a probability density function in the failure area according to the first- or second-order moment.It is shown that the parameters related to interfacial failure follow a Weibull distribution in two types of TBC. The interfacial failure of TBCs is significantly affected by the thermal mismatch of material properties and the temperature drop in service.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.U2241238,52275461,and 92060201)the Major Program(JD)of Hubei Province,China(No.2023BAA003)the Key Research and Development Program of Hubei Province,China(No.2023BAB107).
文摘Modern aero and stationary gas turbine engines have been designed with much higher compressor-pressure ratios and thrust-weight ratios than earlier models,and these ratios are strongly influenced by the hot-running clearances between the rotating and stationary components.The main benefit of reduction in the clearances is efficiency gains,resulting in lowered fuel consumption and polluting gas emissions,with ecological and economic advantages.However,at these undersized clearances,some rubbing interactions are unavoidable,which can be accommodated by applying Abradable Sealing Coatings(ASCs)on the stationary inner surface.This paper reviews the commercially available abradable materials for thermal spraying at various application positions and temperatures.Emphasis is placed on the abradability and wear mechanisms involved.In addition,considering the tendency of SiC/SiC ceramic matrix composites replacing superalloys as hot section components,the future prospect of ceramic abradables based on Environmental Barrier Coatings(EBCs)in turbine stages is summarized and a new concept of"self-degradable ceramics"based on the corrosive steam environment is proposed for the purpose of high-temperature fillerfree abradables.
基金supported by the National Natural Science Foundation of China (Grants 11002122, 51172192, and 11272275)the Military-Civil Special Foundation of Hunan Province (Grant 2013280)+1 种基金the Natural Science Foundation of Hunan Province (Grant 11JJ4003)the Doctoral Scientific Research Foundation of Xiangtan University (Grants KZ08022, KZ03013, and KF20140303)
文摘Thermal barrier coatings(TBCs) usually exhibit an uncertain lifetime owing to their scattering mechanical properties and severe service conditions. To consider these uncertainties, a reliability assessment method is proposed based on failure probability analysis. First, a limit state equation is established to demarcate the boundary between failure and safe regions, and then the failure probability is calculated by the integration of a probability density function in the failure area according to the first- or second-order moment.It is shown that the parameters related to interfacial failure follow a Weibull distribution in two types of TBC. The interfacial failure of TBCs is significantly affected by the thermal mismatch of material properties and the temperature drop in service.