The self-reforming of coke oven gas(COG)in a gas-based shaft furnace was investigated,employing metallized iron as a catalyst.Thermodynamic analyses,supported by FactSage 8.3 calculations and regression modeling,were ...The self-reforming of coke oven gas(COG)in a gas-based shaft furnace was investigated,employing metallized iron as a catalyst.Thermodynamic analyses,supported by FactSage 8.3 calculations and regression modeling,were used to investigate the effects of temperature(700–1100℃),CO_(2)(3%–10%),and H_(2)O(1%–9%)concentrations on CH_(4) conversion efficiency.Results indicate that CH_(4) conversion exceeds 90%at temperatures above 1000℃,with CO_(2) and H_(2)O concentrations at 9%and 5%,respectively.During the reforming process,introducing CO_(2) provides additional oxygen,facilitating the oxidation of CH_(4),while H_(2)O enhances H_(2) production through the steam reforming pathway.Experimental findings reveal a CH_(4) conversion of 85.83%with a H_(2)/CO ratio of 5.44 at 1050℃.In addition,an optimal H_(2)O concentration of 6%yields the highest CH_(4) conversion of 84.24%,while CO_(2) exhibits minimal effects on promoting the reforming process.Increasing the metallization rate of pellets from 43%to 92%significantly enhances CH_(4) reforming.This is mainly due to the fact that metallized iron is vital in promoting CH_(4) dissociation and improving syngas yield by providing active sites for the redox cycle of CO_(2) and H_(2)O.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52004339)the Key Research and Development Project of Hunan Province,China(No.2022SK2075)+1 种基金China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202216)Central South University Graduate Student Independent Exploration and Innovation Project(2024ZZTS0378).
文摘The self-reforming of coke oven gas(COG)in a gas-based shaft furnace was investigated,employing metallized iron as a catalyst.Thermodynamic analyses,supported by FactSage 8.3 calculations and regression modeling,were used to investigate the effects of temperature(700–1100℃),CO_(2)(3%–10%),and H_(2)O(1%–9%)concentrations on CH_(4) conversion efficiency.Results indicate that CH_(4) conversion exceeds 90%at temperatures above 1000℃,with CO_(2) and H_(2)O concentrations at 9%and 5%,respectively.During the reforming process,introducing CO_(2) provides additional oxygen,facilitating the oxidation of CH_(4),while H_(2)O enhances H_(2) production through the steam reforming pathway.Experimental findings reveal a CH_(4) conversion of 85.83%with a H_(2)/CO ratio of 5.44 at 1050℃.In addition,an optimal H_(2)O concentration of 6%yields the highest CH_(4) conversion of 84.24%,while CO_(2) exhibits minimal effects on promoting the reforming process.Increasing the metallization rate of pellets from 43%to 92%significantly enhances CH_(4) reforming.This is mainly due to the fact that metallized iron is vital in promoting CH_(4) dissociation and improving syngas yield by providing active sites for the redox cycle of CO_(2) and H_(2)O.