针对煤矿井下电控系统中DC-DC电源模块电容软故障类型多样、诊断精度不足的问题,提出了一种基于并行时序卷积网络(TCN)与图卷积网络(GCN)的融合模型。以150 W Boost型DC-DC电源为研究对象,采集电路中4个测点的电压信号。该模型通过TCN...针对煤矿井下电控系统中DC-DC电源模块电容软故障类型多样、诊断精度不足的问题,提出了一种基于并行时序卷积网络(TCN)与图卷积网络(GCN)的融合模型。以150 W Boost型DC-DC电源为研究对象,采集电路中4个测点的电压信号。该模型通过TCN捕获长时依赖特征,以GCN刻画测点拓扑关系;二者在特征层拼接,实现时间维与空间结构信息的互补融合。实验结果表明,该模型平均准确率达99.72%;在6 dB、4 dB、2 dB、0 dB信噪比条件下,准确率分别达到99.48%、98.54%、98.17%和93.78%,高于其他模型。该研究为煤矿井下电控设备中电容软故障的智能诊断提供了有效技术路径。展开更多