Background:Excessive use of inorganic trace minerals(ITMs)in swine production leads to high fecal mineral excretion and environmental risks,while most studies on organic trace minerals(OTMs)focus on single elements,wi...Background:Excessive use of inorganic trace minerals(ITMs)in swine production leads to high fecal mineral excretion and environmental risks,while most studies on organic trace minerals(OTMs)focus on single elements,with limited data on the synergistic effects and molecular mechanisms of combined OTMs(Fe,Cu,Mn,Zn)in growing-finishing pigs.Methods:This study aimed to investigate the effects of graded levels of micromineral proteinates(combined OTMs)on growth performance,mineral metabolism,and mRNA expression of mineral regulatory proteins.A total of 360 crossbred Duroc×Landrace×Large White pigs(initial body weight 47.1±4.8 kg)were randomly assigned to 6 dietary treatments:basal diet without microminerals(CON),basal diet with ITMs at commercially recommended levels(IT),and basal diets with 15%(OT 15%),25%(OT 25%),35%(OT 35%)commercially recommended levels(CRL)of combined micromineral proteinates.After a 70-day feeding trial,samples were analyzed using ICP-OES,ELISA,and RT-qPCR.Results:Results showed that reduced levels(15-35%CRL)of micromineral proteinates did not significantly affect average daily gain,average daily feed intake,or feed conversion ratio(gain-to-feed ratio)compared to IT(P>0.05),but significantly increased plasma Cu(1.73-1.83μg/mL)and Zn(1.72-1.97μg/mL)concentrations(P<0.05)and elevated activities of Cu/Zn-superoxide dismutase(32.9-35.9 U/L)and manganese superoxide dismutase(20.5-24.1 U/L)compared to CON(P<0.05),with no significant differences from IT(P>0.05).Fecal excretion of Fe,Cu,Mn,and Zn was significantly reduced by 35-50%in OT 15%-OT 35%groups compared to IT(P<0.05).OT 25%group exhibited the highest apparent absorptivity of Fe(38.5%),Cu(27.8%),and Zn(42.4%)(P<0.05),which was associated with significantly regulated mRNA expression of mineral regulatory proteins:upregulated DMT1,FPN1,ZIP4,and MT1A in the duodenum,and modulated HAMP,ATP7B,ZIP14,and ZnT1 in the liver(P<0.05).Conclusion:In conclusion,dietary supplementation with 25%CRL or less of combined micromineral proteinates can fully meet the nutritional needs of growing-finishing pigs,improve mineral absorptivity,and reduce fecal mineral excretion by regulating intestinal and hepatic mineral transport and homeostatic proteins,providing a sustainable alternative to high-dose ITMs.展开更多
基金financially supported by the Hainan Province Science and Technology Special Fund(Grant no:ZDYF2024XDNY187).
文摘Background:Excessive use of inorganic trace minerals(ITMs)in swine production leads to high fecal mineral excretion and environmental risks,while most studies on organic trace minerals(OTMs)focus on single elements,with limited data on the synergistic effects and molecular mechanisms of combined OTMs(Fe,Cu,Mn,Zn)in growing-finishing pigs.Methods:This study aimed to investigate the effects of graded levels of micromineral proteinates(combined OTMs)on growth performance,mineral metabolism,and mRNA expression of mineral regulatory proteins.A total of 360 crossbred Duroc×Landrace×Large White pigs(initial body weight 47.1±4.8 kg)were randomly assigned to 6 dietary treatments:basal diet without microminerals(CON),basal diet with ITMs at commercially recommended levels(IT),and basal diets with 15%(OT 15%),25%(OT 25%),35%(OT 35%)commercially recommended levels(CRL)of combined micromineral proteinates.After a 70-day feeding trial,samples were analyzed using ICP-OES,ELISA,and RT-qPCR.Results:Results showed that reduced levels(15-35%CRL)of micromineral proteinates did not significantly affect average daily gain,average daily feed intake,or feed conversion ratio(gain-to-feed ratio)compared to IT(P>0.05),but significantly increased plasma Cu(1.73-1.83μg/mL)and Zn(1.72-1.97μg/mL)concentrations(P<0.05)and elevated activities of Cu/Zn-superoxide dismutase(32.9-35.9 U/L)and manganese superoxide dismutase(20.5-24.1 U/L)compared to CON(P<0.05),with no significant differences from IT(P>0.05).Fecal excretion of Fe,Cu,Mn,and Zn was significantly reduced by 35-50%in OT 15%-OT 35%groups compared to IT(P<0.05).OT 25%group exhibited the highest apparent absorptivity of Fe(38.5%),Cu(27.8%),and Zn(42.4%)(P<0.05),which was associated with significantly regulated mRNA expression of mineral regulatory proteins:upregulated DMT1,FPN1,ZIP4,and MT1A in the duodenum,and modulated HAMP,ATP7B,ZIP14,and ZnT1 in the liver(P<0.05).Conclusion:In conclusion,dietary supplementation with 25%CRL or less of combined micromineral proteinates can fully meet the nutritional needs of growing-finishing pigs,improve mineral absorptivity,and reduce fecal mineral excretion by regulating intestinal and hepatic mineral transport and homeostatic proteins,providing a sustainable alternative to high-dose ITMs.