Plants are under constant exposure to varied biotic and abiotic stresses,which significantly affect their growth,productivity,and survival.Biotic stress,caused by pathogens,and abiotic stress,including drought,salinit...Plants are under constant exposure to varied biotic and abiotic stresses,which significantly affect their growth,productivity,and survival.Biotic stress,caused by pathogens,and abiotic stress,including drought,salinity,extreme temperatures,and heavy metals,activate overlapping yet distinct immune pathways.These are comprised of morphological barriers,hormonal signaling,and the induction of stress-responsive genes through complex pathways mediated by reactive oxygen species(ROS),phytohormones,and secondary metabolites.Abiotic stress triggers organelle-mediated retrograde signaling from organelles like chloroplasts and mitochondria,which causes unfolded protein responses and the regulation of cellular homeostasis.Simultaneously,biotic stress activates both PAMP-triggered immunity(PTI)and effector-triggered immunity(ETI),mediated by salicylic acid(SA),jasmonic acid(JA),and ethylene(ET).This review aims to provide an integrated overview of plant immune responses tomultiple stressors,with emphasis on molecular crosstalk and recent technological interventions.A systematic literature search was conducted using the Scopus database,covering studies published between 2010 and 2025.Advances in CRISPR-Cas genome editing,RNA interference,omics technologies,nanotechnology,and artificial intelligence have improved our knowledge of plant stress physiology and facilitated the design of resilient crop varieties.Despite these advances,the integration of immune signals under simultaneous biotic and abiotic stress remains poorly understood,particularly at tissue-specific and cellular levels.Additionally,practical challenges persist in delivery methods,regulatory hurdles,and long-term field validation.With the escalation of climate change,understanding the complex crosstalk between stress signalling pathways is essential formaintaining sustainable agriculture and global food security.Future directions point toward real-time monitoring tools,such as single-cell omics and spatial transcriptomics,to fine-tune immune responses and support precision crop improvement.展开更多
Benzoxazinoids(BXDs)are a class of plant secondary metabolites that play pivotal roles in plant defense against pathogens and pests,as well as in allelopathy.This review synthesizes recent advances in our understandin...Benzoxazinoids(BXDs)are a class of plant secondary metabolites that play pivotal roles in plant defense against pathogens and pests,as well as in allelopathy.This review synthesizes recent advances in our understanding of the structural and functional diversity of BXDs,the independent evolutionary trajectories of their biosynthetic pathways across different plant species,their metabolic transformations in target organisms,and the opportunities and challenges of optimizing BXD biosynthesis in crops through metabolic engineering.Compared with monocotyledons,dicotyledons employ a more diverse set of enzymes to catalyze the core reactions of BXD biosynthesis.This functional divergence—yet biochemical convergence—between monocotyledons and dicotyledons exemplifies the convergent evolution of BXD biosynthetic pathways in plants.BXDs act not only as potent antifeedants,insecticides,and antimicrobials but also function as signaling molecules that induce callose deposition and activate systemic immunity,thereby enhancing plant resistance to biotic stress.Furthermore,BXDs shape the rhizosphere by modulating microbial communities through species-specific antimicrobial activities and microbial detoxification mechanisms,ultimately exerting allelopathic effects that alter soil chemistry and nutrient dynamics.The translational potential of BXDs is increasingly recognized by synthetic biology approaches,including artificial intelligence-driven enzyme optimization,heterologous pathway engineering,and gene-editing to enhance crop resistance.Despite these promising prospects,challenges remain in balancing metabolic trade-offs and mitigating ecological risks associated with persistent accumulation of BXDs.Future research integrating multi-omics,evolutionary genomics,and microbiome studies will be essential to fully harness BXDs for sustainable crop improvement and reduced reliance on synthetic agrochemicals.展开更多
文摘Plants are under constant exposure to varied biotic and abiotic stresses,which significantly affect their growth,productivity,and survival.Biotic stress,caused by pathogens,and abiotic stress,including drought,salinity,extreme temperatures,and heavy metals,activate overlapping yet distinct immune pathways.These are comprised of morphological barriers,hormonal signaling,and the induction of stress-responsive genes through complex pathways mediated by reactive oxygen species(ROS),phytohormones,and secondary metabolites.Abiotic stress triggers organelle-mediated retrograde signaling from organelles like chloroplasts and mitochondria,which causes unfolded protein responses and the regulation of cellular homeostasis.Simultaneously,biotic stress activates both PAMP-triggered immunity(PTI)and effector-triggered immunity(ETI),mediated by salicylic acid(SA),jasmonic acid(JA),and ethylene(ET).This review aims to provide an integrated overview of plant immune responses tomultiple stressors,with emphasis on molecular crosstalk and recent technological interventions.A systematic literature search was conducted using the Scopus database,covering studies published between 2010 and 2025.Advances in CRISPR-Cas genome editing,RNA interference,omics technologies,nanotechnology,and artificial intelligence have improved our knowledge of plant stress physiology and facilitated the design of resilient crop varieties.Despite these advances,the integration of immune signals under simultaneous biotic and abiotic stress remains poorly understood,particularly at tissue-specific and cellular levels.Additionally,practical challenges persist in delivery methods,regulatory hurdles,and long-term field validation.With the escalation of climate change,understanding the complex crosstalk between stress signalling pathways is essential formaintaining sustainable agriculture and global food security.Future directions point toward real-time monitoring tools,such as single-cell omics and spatial transcriptomics,to fine-tune immune responses and support precision crop improvement.
基金supported by the Excellent Youth Science Project of Henan Natural Science Foundation(242300421110)the National Natural Science Foundation of China(32372129,32272038)Henan Provincial Nature Foundation Project(242300420151).
文摘Benzoxazinoids(BXDs)are a class of plant secondary metabolites that play pivotal roles in plant defense against pathogens and pests,as well as in allelopathy.This review synthesizes recent advances in our understanding of the structural and functional diversity of BXDs,the independent evolutionary trajectories of their biosynthetic pathways across different plant species,their metabolic transformations in target organisms,and the opportunities and challenges of optimizing BXD biosynthesis in crops through metabolic engineering.Compared with monocotyledons,dicotyledons employ a more diverse set of enzymes to catalyze the core reactions of BXD biosynthesis.This functional divergence—yet biochemical convergence—between monocotyledons and dicotyledons exemplifies the convergent evolution of BXD biosynthetic pathways in plants.BXDs act not only as potent antifeedants,insecticides,and antimicrobials but also function as signaling molecules that induce callose deposition and activate systemic immunity,thereby enhancing plant resistance to biotic stress.Furthermore,BXDs shape the rhizosphere by modulating microbial communities through species-specific antimicrobial activities and microbial detoxification mechanisms,ultimately exerting allelopathic effects that alter soil chemistry and nutrient dynamics.The translational potential of BXDs is increasingly recognized by synthetic biology approaches,including artificial intelligence-driven enzyme optimization,heterologous pathway engineering,and gene-editing to enhance crop resistance.Despite these promising prospects,challenges remain in balancing metabolic trade-offs and mitigating ecological risks associated with persistent accumulation of BXDs.Future research integrating multi-omics,evolutionary genomics,and microbiome studies will be essential to fully harness BXDs for sustainable crop improvement and reduced reliance on synthetic agrochemicals.