Continuous research on Cephalotaxus plants has ultimately led to the US food and drug administration (FDA) ap-provalof homoharringtonine in 2012 for the treatment of chronic myeloid leukemia. Additionally, another imp...Continuous research on Cephalotaxus plants has ultimately led to the US food and drug administration (FDA) ap-provalof homoharringtonine in 2012 for the treatment of chronic myeloid leukemia. Additionally, another important class of natural products from Cephalotaxus plants is cephalotane diterpenoids. Since the discovery of the first member, harring-tonolide,in 1978, cephalotane diterpenoids have garnered significant attention from the scientific community due to their re-markableanti-cancer activity. The unique structural features of cephalotane diterpenoids, a 7/6/5/6-fused tetracyclic carbon skeleton and a bridged lactone, make them ideal targets for synthetic chemists. Successfully synthesizing these complex diterpenoids is of great importance for the discovery and development of anti-tumor drugs. To date, ten research groups have completed the total synthesis of 24 cephalotane diterpenoids. The latest progress in the total synthesis of cephalotane diterpe-noidsis reviewed, showcasing the importance of these innovative synthetic strategies in the efficient synthesis of complex natural products and their potential significance in advancing the field of drug discovery.展开更多
文摘Continuous research on Cephalotaxus plants has ultimately led to the US food and drug administration (FDA) ap-provalof homoharringtonine in 2012 for the treatment of chronic myeloid leukemia. Additionally, another important class of natural products from Cephalotaxus plants is cephalotane diterpenoids. Since the discovery of the first member, harring-tonolide,in 1978, cephalotane diterpenoids have garnered significant attention from the scientific community due to their re-markableanti-cancer activity. The unique structural features of cephalotane diterpenoids, a 7/6/5/6-fused tetracyclic carbon skeleton and a bridged lactone, make them ideal targets for synthetic chemists. Successfully synthesizing these complex diterpenoids is of great importance for the discovery and development of anti-tumor drugs. To date, ten research groups have completed the total synthesis of 24 cephalotane diterpenoids. The latest progress in the total synthesis of cephalotane diterpe-noidsis reviewed, showcasing the importance of these innovative synthetic strategies in the efficient synthesis of complex natural products and their potential significance in advancing the field of drug discovery.