Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an...Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.展开更多
Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the m...Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the main contributions is proving this property using linear algebra instead of profound knowledge.This makes it easy to read and understand this fundamental fact.The proof of linear independence of a set of Gauss functions relies on the constructing method for one-dimensional space and on the deducing method for higher dimensions.Additionally,under the condition of preserving the same moments between the original function and interpolating function,both the interpolating existence and uniqueness are proven for GRBF in one-dimensional space.The final work demonstrates the application of the GRBF method to locate lunar olivine.By combining preprocessed data using GRBF with the removing envelope curve method,a program is created to find the position of lunar olivine based on spectrum data,and the numerical experiment shows that it is an effective scheme.展开更多
Lunar impact glasses have been identified as crucial indicators of geochemical information regarding their source regions. Impact glasses can be categorized as either local or exotic. Those preserving geochemical sign...Lunar impact glasses have been identified as crucial indicators of geochemical information regarding their source regions. Impact glasses can be categorized as either local or exotic. Those preserving geochemical signatures matching local lithologies (e.g., mare basalts or their single minerals) or regolith bulk soil compositions are classified as “local”. Otherwise, they could be defined as “exotic”. The analysis of exotic glasses provides the opportunity to explore previously unsampled lunar areas. This study focuses on the identification of exotic glasses within the Chang’e-5 (CE-5) soil sample by analyzing the trace elements of 28 impact glasses with distinct major element compositions in comparison with the CE-5 bulk soil. However, the results indicate that 18 of the analyzed glasses exhibit trace element compositions comparable to those of the local CE-5 materials. In particular, some of them could match the local single mineral component in major and trace elements, suggesting a local origin. Therefore, it is recommended that the investigation be expanded from using major elements to including nonvolatile trace elements, with a view to enhancing our understanding on the provenance of lunar impact glasses. To achieve a more accurate identification of exotic glasses within the CE-5 soil sample, a novel classification plot of Mg# versus La is proposed. The remaining 10 glasses, which exhibit diverse trace element variations, were identified as exotic. A comparative analysis of their chemical characteristics with remote sensing data indicates that they may have originated from the Aristarchus, Mairan, Sharp, or Pythagoras craters. This study elucidates the classification and possible provenance of exotic materials within the CE-5 soil sample, thereby providing constraints for the enhanced identification of local and exotic components at the CE-5 landing site.展开更多
针对月壤钻取采样过程中存在大颗粒岩块情况进行三维离散元动态仿真分析。建立考虑扭转、弯曲力矩及等效引力作用的新型三维离散元月壤模型,通过三轴仿真试验进行细观参数标定,得到黏聚力为0.90 k Pa,内摩擦角为42.25°的满足真实...针对月壤钻取采样过程中存在大颗粒岩块情况进行三维离散元动态仿真分析。建立考虑扭转、弯曲力矩及等效引力作用的新型三维离散元月壤模型,通过三轴仿真试验进行细观参数标定,得到黏聚力为0.90 k Pa,内摩擦角为42.25°的满足真实月壤宏观力学指标的仿真模型。针对月壤内层存在大颗粒情况设计4种采样工况分别进行仿真分析,监测大颗粒运动轨迹与采样效率,发现了"旋入效应"、"纵向运移效应"与"阻塞效应",仿真结果表明岩块粒径大小直接影响采样结果:当岩块粒径小于钻头"虚拟切削圆"时,其无论存在于任何位置对采样效率与后续样品缠绕收集均无明显影响;当岩块粒径大于"虚拟切削圆"时,阻塞现象严重,样品收集困难,极易导致采样失败。研究结论对月壤钻取采样控制设计与钻具结构设计具有重要的工程参考价值。展开更多
基金the National Key Research and Development Program of China(Grant No.2022YFF0711400)which provided valuable financial support and resources for my research and made it possible for me to deeply explore the unknown mysteries in the field of lunar geologythe National Space Science Data Center Youth Open Project(Grant No.NSSDC2302001),which has not only facilitated the smooth progress of my research,but has also built a platform for me to communicate and cooperate with experts in the field.
文摘Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.
基金Supported by the National Basic Research Program of China(2012CB025904)Zhengzhou Shengda University of Economics,Business and Management(SD-YB2025085)。
文摘Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the main contributions is proving this property using linear algebra instead of profound knowledge.This makes it easy to read and understand this fundamental fact.The proof of linear independence of a set of Gauss functions relies on the constructing method for one-dimensional space and on the deducing method for higher dimensions.Additionally,under the condition of preserving the same moments between the original function and interpolating function,both the interpolating existence and uniqueness are proven for GRBF in one-dimensional space.The final work demonstrates the application of the GRBF method to locate lunar olivine.By combining preprocessed data using GRBF with the removing envelope curve method,a program is created to find the position of lunar olivine based on spectrum data,and the numerical experiment shows that it is an effective scheme.
基金funded by the National Natural Science Foundation of China (Grant Nos. 42241103 and 62227901)the Key Research Program of the Institute of Geology and Geophysics, Chinese Academy of Sciences (Grant Nos. IGGCAS-202101 and IGGCAS-202401)
文摘Lunar impact glasses have been identified as crucial indicators of geochemical information regarding their source regions. Impact glasses can be categorized as either local or exotic. Those preserving geochemical signatures matching local lithologies (e.g., mare basalts or their single minerals) or regolith bulk soil compositions are classified as “local”. Otherwise, they could be defined as “exotic”. The analysis of exotic glasses provides the opportunity to explore previously unsampled lunar areas. This study focuses on the identification of exotic glasses within the Chang’e-5 (CE-5) soil sample by analyzing the trace elements of 28 impact glasses with distinct major element compositions in comparison with the CE-5 bulk soil. However, the results indicate that 18 of the analyzed glasses exhibit trace element compositions comparable to those of the local CE-5 materials. In particular, some of them could match the local single mineral component in major and trace elements, suggesting a local origin. Therefore, it is recommended that the investigation be expanded from using major elements to including nonvolatile trace elements, with a view to enhancing our understanding on the provenance of lunar impact glasses. To achieve a more accurate identification of exotic glasses within the CE-5 soil sample, a novel classification plot of Mg# versus La is proposed. The remaining 10 glasses, which exhibit diverse trace element variations, were identified as exotic. A comparative analysis of their chemical characteristics with remote sensing data indicates that they may have originated from the Aristarchus, Mairan, Sharp, or Pythagoras craters. This study elucidates the classification and possible provenance of exotic materials within the CE-5 soil sample, thereby providing constraints for the enhanced identification of local and exotic components at the CE-5 landing site.
文摘针对月壤钻取采样过程中存在大颗粒岩块情况进行三维离散元动态仿真分析。建立考虑扭转、弯曲力矩及等效引力作用的新型三维离散元月壤模型,通过三轴仿真试验进行细观参数标定,得到黏聚力为0.90 k Pa,内摩擦角为42.25°的满足真实月壤宏观力学指标的仿真模型。针对月壤内层存在大颗粒情况设计4种采样工况分别进行仿真分析,监测大颗粒运动轨迹与采样效率,发现了"旋入效应"、"纵向运移效应"与"阻塞效应",仿真结果表明岩块粒径大小直接影响采样结果:当岩块粒径小于钻头"虚拟切削圆"时,其无论存在于任何位置对采样效率与后续样品缠绕收集均无明显影响;当岩块粒径大于"虚拟切削圆"时,阻塞现象严重,样品收集困难,极易导致采样失败。研究结论对月壤钻取采样控制设计与钻具结构设计具有重要的工程参考价值。