二硫化钼在可充电电池等能源存储领域具有广阔的应用前景,然而其电子导电性较差、充放电过程中易粉化和团聚等问题限制了其发展。采用水热法一步合成了液态合金(LM)和二硫化钼(MoS_(2))的复合负极材料(LM@MoS_(2))。通过XRD、SEM等综合...二硫化钼在可充电电池等能源存储领域具有广阔的应用前景,然而其电子导电性较差、充放电过程中易粉化和团聚等问题限制了其发展。采用水热法一步合成了液态合金(LM)和二硫化钼(MoS_(2))的复合负极材料(LM@MoS_(2))。通过XRD、SEM等综合表征方法对复合材料的结构和形态特性进行了研究。结果表明,液态合金通过静电吸附和配位键等方式有效结合于MoS_(2),形成稳定的复合结构。此外,复合材料具有较高的可变形性和化学稳定性,促进了电极材料裂纹表面的修复,减少了内部氧化还原反应,提高了锂离子电池的循环稳定性。当LM与MoS_(2)质量比为2:1时,复合材料表现出最佳性能。在0.1 A·g^(−1)的电流密度下,经过100次循环,复合材料的比容量稳定在656.1 m A·h·g^(−1),容量保持率达74.3%,该研究为锂离子电池电极的裂纹自修复提供了新思路。展开更多
A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incor...A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).展开更多
The sulfur-doped titanium dioxide (S/TiO2) was prepared by calcinations. The photocatalytic decomposition of benzoic acid solution was carried out under simulated sun light; the photocatalytic activity is 2.7 times of...The sulfur-doped titanium dioxide (S/TiO2) was prepared by calcinations. The photocatalytic decomposition of benzoic acid solution was carried out under simulated sun light; the photocatalytic activity is 2.7 times of TiO2. The results of XRD show that the sulfur can restrain the crystallization transformation of TiO2 from anatase to rutile, although the calcinations temperature has attained 500 ℃, the crystallization still is anatase entirely. The responsive wavelength range of S/TiO2 was shifted; it has obvious absorption in the region from 320 to 550 nm. The S (S6+) substituted for some of the lattice titanium atoms in S/TiO2. At the same time the XRF also prove the formation of S6+ and the atomic content is 2.13%.展开更多
文摘二硫化钼在可充电电池等能源存储领域具有广阔的应用前景,然而其电子导电性较差、充放电过程中易粉化和团聚等问题限制了其发展。采用水热法一步合成了液态合金(LM)和二硫化钼(MoS_(2))的复合负极材料(LM@MoS_(2))。通过XRD、SEM等综合表征方法对复合材料的结构和形态特性进行了研究。结果表明,液态合金通过静电吸附和配位键等方式有效结合于MoS_(2),形成稳定的复合结构。此外,复合材料具有较高的可变形性和化学稳定性,促进了电极材料裂纹表面的修复,减少了内部氧化还原反应,提高了锂离子电池的循环稳定性。当LM与MoS_(2)质量比为2:1时,复合材料表现出最佳性能。在0.1 A·g^(−1)的电流密度下,经过100次循环,复合材料的比容量稳定在656.1 m A·h·g^(−1),容量保持率达74.3%,该研究为锂离子电池电极的裂纹自修复提供了新思路。
文摘A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).
文摘The sulfur-doped titanium dioxide (S/TiO2) was prepared by calcinations. The photocatalytic decomposition of benzoic acid solution was carried out under simulated sun light; the photocatalytic activity is 2.7 times of TiO2. The results of XRD show that the sulfur can restrain the crystallization transformation of TiO2 from anatase to rutile, although the calcinations temperature has attained 500 ℃, the crystallization still is anatase entirely. The responsive wavelength range of S/TiO2 was shifted; it has obvious absorption in the region from 320 to 550 nm. The S (S6+) substituted for some of the lattice titanium atoms in S/TiO2. At the same time the XRF also prove the formation of S6+ and the atomic content is 2.13%.