We investigated the influence of PEG on the surface morphology,photocatalytic performance,photovoltaic conversion efficiency(PCE),and performance in complex environments of TiO_(2)-PEG composite films.The PEG content ...We investigated the influence of PEG on the surface morphology,photocatalytic performance,photovoltaic conversion efficiency(PCE),and performance in complex environments of TiO_(2)-PEG composite films.The PEG content was varied to further optimize the comprehensive performance of the composite films.Using titanium isopropoxide as the main raw material,TiO_(2)-PEG sol was prepared via sol-gel method and coated on the surface of photovoltaic(PV)glass by spin coating.The surface morphology and crystalline phase of the TiO_(2)-PEG film were analyzed,and the effects of the TiO_(2)-PEG film on the photocatalytic performance,PCE,contact angle,and performance in complex environments of PV glass were studied.The experimental results show that under the specified experimental conditions,when 4 g PEG10000 is added,the comprehensive performance of the coated PV glass reaches its optimum,with an average transmittance of 91.73%at 550 nm.Using methylene blue(MB)dye degradation experiments,the degradation rate after 2 hours of xenon lamp irradiation reaches 98.15%.The photovoltaic conversion efficiency of the composite film reaches 16.33%,and the contact angle is 3.28°,indicating a superhydrophilic state.It is demonstrated that the appropriate amount of PEG can enhance the transmittance,self-cleaning performance,and photovoltaic conversion efficiency of coated PV glass.展开更多
基金Funded by the Project of Guangxi Science and Technology(No.ZY24212061)the Project of Guangxi Science and Technology Major Program(No.AA24263054)the Project of Beihai Science and Technology(No.202379002)。
文摘We investigated the influence of PEG on the surface morphology,photocatalytic performance,photovoltaic conversion efficiency(PCE),and performance in complex environments of TiO_(2)-PEG composite films.The PEG content was varied to further optimize the comprehensive performance of the composite films.Using titanium isopropoxide as the main raw material,TiO_(2)-PEG sol was prepared via sol-gel method and coated on the surface of photovoltaic(PV)glass by spin coating.The surface morphology and crystalline phase of the TiO_(2)-PEG film were analyzed,and the effects of the TiO_(2)-PEG film on the photocatalytic performance,PCE,contact angle,and performance in complex environments of PV glass were studied.The experimental results show that under the specified experimental conditions,when 4 g PEG10000 is added,the comprehensive performance of the coated PV glass reaches its optimum,with an average transmittance of 91.73%at 550 nm.Using methylene blue(MB)dye degradation experiments,the degradation rate after 2 hours of xenon lamp irradiation reaches 98.15%.The photovoltaic conversion efficiency of the composite film reaches 16.33%,and the contact angle is 3.28°,indicating a superhydrophilic state.It is demonstrated that the appropriate amount of PEG can enhance the transmittance,self-cleaning performance,and photovoltaic conversion efficiency of coated PV glass.