Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas...Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas.展开更多
以γ-Al2O3为载体,分别负载Cu、Mn和Ti3种不同活性成分制备了CuO/γ-Al2O3、MnO2/γ-Al2O3和TiO2/γ-Al2O3催化剂,采用SEM、XRD和EDS等技术对催化剂进行了表征分析。在脉冲放电反应体系中放置所制备的催化剂对甲醛进行降解研究,了解催...以γ-Al2O3为载体,分别负载Cu、Mn和Ti3种不同活性成分制备了CuO/γ-Al2O3、MnO2/γ-Al2O3和TiO2/γ-Al2O3催化剂,采用SEM、XRD和EDS等技术对催化剂进行了表征分析。在脉冲放电反应体系中放置所制备的催化剂对甲醛进行降解研究,了解催化剂催化性能,及其与脉冲放电的协同效应。实验结果表明,负载型催化剂与脉冲放电具有协同作用,能明显提高甲醛的降解率,且MnO2/γ-Al2O3与脉冲放电的协同效果明显好于CuO/γ-Al2O3、TiO2/γ-Al2O3。MnO2/γ-Al2O3催化剂中Mn的负载量、制备时的焙烧温度对催化剂的活性有明显影响,当Mn负载量为8%、焙烧温度为300℃时,制备的MnO2/γ-Al2O3催化剂性能最佳,在脉冲电压为24 k V,脉冲频率为40 Hz的条件下,甲醛去除率为97%。最后,对脉冲放电协同MnO2/γ-Al2O3催化剂降解甲醛的机理进行了探讨。展开更多
基金the funding provided by National Natural Science Foundation of China (No.12065019)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 20KJB140025)+1 种基金the Open Fund of the Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province(No. JBGS032)the Scientific Research Project for the Introduction Talent of Yancheng Institute of Technology(Nos. XJR2020031 and XJR2021069)。
文摘Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas.
文摘以γ-Al2O3为载体,分别负载Cu、Mn和Ti3种不同活性成分制备了CuO/γ-Al2O3、MnO2/γ-Al2O3和TiO2/γ-Al2O3催化剂,采用SEM、XRD和EDS等技术对催化剂进行了表征分析。在脉冲放电反应体系中放置所制备的催化剂对甲醛进行降解研究,了解催化剂催化性能,及其与脉冲放电的协同效应。实验结果表明,负载型催化剂与脉冲放电具有协同作用,能明显提高甲醛的降解率,且MnO2/γ-Al2O3与脉冲放电的协同效果明显好于CuO/γ-Al2O3、TiO2/γ-Al2O3。MnO2/γ-Al2O3催化剂中Mn的负载量、制备时的焙烧温度对催化剂的活性有明显影响,当Mn负载量为8%、焙烧温度为300℃时,制备的MnO2/γ-Al2O3催化剂性能最佳,在脉冲电压为24 k V,脉冲频率为40 Hz的条件下,甲醛去除率为97%。最后,对脉冲放电协同MnO2/γ-Al2O3催化剂降解甲醛的机理进行了探讨。