期刊文献+
共找到1,765篇文章
< 1 2 89 >
每页显示 20 50 100
共形射影等价的统计流形及其仿射浸入
1
作者 徐晓利 王瑜 秦华军 《兰州理工大学学报》 北大核心 2025年第3期161-166,共6页
具有平坦结构或者具有共形射影平坦结构的统计流形是信息几何研究的主要对象,研究统计流形的共形射影等价性,并得到几条性质,同时研究了余维为2的相对仿射浸入,得到不同的浸入方式导出的统计结构的关系.
关键词 统计流形 对偶联络 等仿射结构 共形射影等价 仿射浸入
在线阅读 下载PDF
Solutions to SU(n+1)Toda systems with cone singularities via toric curves on compact Riemann surfaces
2
作者 Jingyu Mu Yiqian Shi and Bin Xu 《中国科学技术大学学报》 北大核心 2025年第5期2-13,1,I0001,共14页
On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1... On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class. 展开更多
关键词 SU(n+1)Toda system regular singularity unitary curve toric solution character ensemble
在线阅读 下载PDF
η-Ricci-Bourguignon孤立子的刚性结果
3
作者 杨瑞瑞 刘建成 《吉林大学学报(理学版)》 北大核心 2025年第6期1622-1628,共7页
首先,用散度定理和几何分析的方法研究紧致η-Ricci-Bourguignon孤立子的刚性问题,得到了关于孤立子的势向量场和η的对偶向量场的两个关键积分公式.其次,在不同的积分条件下得到了该孤立子的刚性结果,即证明了该孤立子或是η-Einstein... 首先,用散度定理和几何分析的方法研究紧致η-Ricci-Bourguignon孤立子的刚性问题,得到了关于孤立子的势向量场和η的对偶向量场的两个关键积分公式.其次,在不同的积分条件下得到了该孤立子的刚性结果,即证明了该孤立子或是η-Einstein流形或是Einstein流形. 展开更多
关键词 η-Ricci-Bourguignon孤立子 EINSTEIN流形 KILLING向量场 对偶向量场
在线阅读 下载PDF
共形几何中的一类退化的完全非线性方程的边值问题
4
作者 贺妍 张元正 《数学物理学报(A辑)》 北大核心 2025年第6期1825-1838,共14页
该文得到了带边流形上的一类源于共形几何的、退化的完全非线性方程的解的先验估计.并进一步使用连续性方法得到了这类方程解的存在性.
关键词 共形几何 退化方程 先验估计
在线阅读 下载PDF
THE RELATIVE VOLUME FUNCTION AND THE CAPACITY OF SPHERE ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS
5
作者 Xiaoshang JIN 《Acta Mathematica Scientia》 2025年第3期755-770,共16页
Following the work of Li-Shi-Qing, we propose the definition of the relative volume function for an AH manifold. It is not a constant function in general and we study the regularity of this function. We use this funct... Following the work of Li-Shi-Qing, we propose the definition of the relative volume function for an AH manifold. It is not a constant function in general and we study the regularity of this function. We use this function to provide an accurate characterization of the height of the geodesic defining function for the AH manifold with a given boundary metric. Furthermore, it is shown that such functions are uniformly bounded from below at infinity and the bound only depends on the dimension. In the end, we apply this function to study the capacity of balls in AH manifolds and demonstrate that the “relative p—capacity function” coincides with the relative volume function under appropriate curvature conditions. 展开更多
关键词 conformally compact relative volume geodesic defining function capacity
在线阅读 下载PDF
黎曼空间型中的弱凸Biconservative超曲面
6
作者 聂天 独力 《甘肃高师学报》 2025年第1期7-10,共4页
文章深入研究了黎曼空间型中的Biconservative超曲面的几何性质,并且证明了弱凸Biconservative超曲面的平均曲率为非负常数.作为应用,文章得到了其数量曲率的一个最优上界.
关键词 黎曼空间型 Biconservative超曲面 常平均曲率 弱凸
在线阅读 下载PDF
拟复射影空间的Kahler迷向子流形
7
作者 石玉鑫 《数学杂志》 2025年第5期445-455,共11页
本文研究了拟复射影空间的Kahler迷向子流形Pinching问题,利用活动标架法,得到了关于第二基本形式、截面曲率下界,Ricci曲率下界的Pinching定理,将Pinching常数和外围空间都进行了推广.
关键词 拟复射影空间 迷向子流形 第二基本形式 Kahler子流形
在线阅读 下载PDF
Sub-Riemannian Limits,Connections with Torsion and the Gauss-Bonnet Theorem for Four Dimensional Twisted BCV Spaces
8
作者 LI Hong-feng LIU Ke-feng WANG Yong 《Chinese Quarterly Journal of Mathematics》 2025年第2期111-134,共24页
In this paper,we compute sub-Riemannian limits of some important curvature variants associated with the connection with torsion for four dimensional twisted BCV spaces and derive a Gauss-Bonnet theorem for four dimens... In this paper,we compute sub-Riemannian limits of some important curvature variants associated with the connection with torsion for four dimensional twisted BCV spaces and derive a Gauss-Bonnet theorem for four dimensional twisted BCV spaces. 展开更多
关键词 Gauss-Bonnet theorem Sub-Riemannian limit Twisted BCV spaces Orthogonal connections with torsion
在线阅读 下载PDF
A Note on Cohomological Mirror Symmetry of Toric Manifolds
9
作者 Hao Wen 《Communications in Mathematical Research》 2025年第3期271-286,共16页
In this note we describe a logarithmic version of mirror Landau-Ginzburg model for semi-projective toric manifolds and show in an elementary and explicit way that the state space ring of the Landau-Ginzburg mirror is ... In this note we describe a logarithmic version of mirror Landau-Ginzburg model for semi-projective toric manifolds and show in an elementary and explicit way that the state space ring of the Landau-Ginzburg mirror is isomorphic to the C-valued cohomology of the toric manifold. 展开更多
关键词 Mirror symmetry Landau-Ginzburg model toric manifold
原文传递
A SURVEY ON THE ISOPERIMETRIC PROBLEM IN RIEMANNIAN MANIFOLDS
10
作者 Jiayu LI Shujing PAN 《Acta Mathematica Scientia》 2025年第1期228-236,共9页
This is a survey of the results in[14]regarding the isoperimetric problem in the Riemannian manifold.We consider a mean curvature type flow in the Riemannian manifold endowed with a non-trivial conformal vector field,... This is a survey of the results in[14]regarding the isoperimetric problem in the Riemannian manifold.We consider a mean curvature type flow in the Riemannian manifold endowed with a non-trivial conformal vector field,which was firstly introduced by Guan and Li[8]in space forms.This flow preserves the volume of the bounded domain enclosed by a star-shaped hypersurface and decreases the area of hypersurface under certain conditions.We will prove the long time existence and convergence of the flow.As a result,the isoperimetric inequality for such a domain is established. 展开更多
关键词 conformal vector felds isoperimetric inequality mean curvature type fow
在线阅读 下载PDF
A VECTOR BUNDLE VALUED MIXED HARD LEFSCHETZ THEOREM
11
作者 Zeng CHEN Guanxiang WANG 《Acta Mathematica Scientia》 2025年第2期514-524,共11页
In this paper,we obtain a vector bundle valued mixed hard Lefschetz theorem.The argument is mainly based on the works of Tien-Cuong Dinh and Viet-Anh Nguyen.
关键词 hard Lefschetz theorem holomorphic vector bundle Hermitian fat vector bundle
在线阅读 下载PDF
THE YANG-MILLS α-FLOW OVER 4-MANIFOLD WITH BOUNDARY
12
作者 Wanjun AI Miaomiao ZHU 《Acta Mathematica Scientia》 2025年第5期2142-2170,共29页
In this paper,we study the Neumann boundary value problem of the Yang-Mills α-flow over a 4-dimensional compact Riemannian manifold with boundary.We establish the short-time existence of the Yang-Millsα-flow in the ... In this paper,we study the Neumann boundary value problem of the Yang-Mills α-flow over a 4-dimensional compact Riemannian manifold with boundary.We establish the short-time existence of the Yang-Millsα-flow in the framework of functional analysis and derive long-time existence and convergence results of classical solutions to the Yang-Millsα-flow,provided that theα-energy of initial connection is below some threshold.We also prove the validity of the boundary version of small energy estimates,removal of isolated singularities,and energy lower bound result for non-flat Yang-Mills connections.These results lead to the bubbling convergence of a sequence of Yang-Millsα-connections,and as an application,we demonstrate the existence of non-trivial Yang-Mills connections with Neumann boundary. 展开更多
关键词 Yang-Mills fow initial boundary value problem blow-up analysis
在线阅读 下载PDF
叶状黎曼流形上广义Bott联络的Bianchi恒等式
13
作者 陈钰莹 《应用数学进展》 2025年第6期335-348,共14页
本文研究在叶状黎曼流形上的广义Bott联络的相关性质,并由广义Bott联络的结构方程推导出Bianchi恒等式。
关键词 叶状黎曼流形 广义Bott联络 Bianchi恒等式
在线阅读 下载PDF
Kazdan-Warner Problems on Compact Riemann Surfaces
14
作者 LI Jiayu ZHU Xiaobao 《数学进展》 北大核心 2025年第2期424-430,共7页
Let(M,g)be a compact Riemann surface with unit area,h a smooth function on M.The Kazdan-Warner problem is that under what kind of conditions on h the equationΔu=8π-8πhe^(u) has a solution.In this survey article,we ... Let(M,g)be a compact Riemann surface with unit area,h a smooth function on M.The Kazdan-Warner problem is that under what kind of conditions on h the equationΔu=8π-8πhe^(u) has a solution.In this survey article,we shall review the development of this problem along the variational method. 展开更多
关键词 Kazdan-Warner equation variational method blow-up analysis maximum principle sign-changing function
原文传递
Some analytic results and applications in extremal Hermitian metrics
15
作者 SANG Haoxin WU Yingyi 《中国科学院大学学报(中英文)》 北大核心 2025年第5期589-599,共11页
In this paper,we introduce and prove three analytic results related to uniform convergence,properties of Newtonian potential,and convergence of sequences in Sobolev space constrained by their Laplacian.Then,utilizing ... In this paper,we introduce and prove three analytic results related to uniform convergence,properties of Newtonian potential,and convergence of sequences in Sobolev space constrained by their Laplacian.Then,utilizing our analytic results,we develop a complete proof of a crucial estimate appearing in the results of Guofang Wang and Xiaohua Zhu,which states the classification of extremal Hermitian metrics with finite energy and area on compact Riemann surfaces and finite singularities satisfying small singular angles. 展开更多
关键词 extremal Hermitian metrics conical singularities of metrics Newtonian potential
在线阅读 下载PDF
极小模原理在一类四阶全对称张量不等式中的应用
16
作者 龚一帆 段德园 李虹 《云南师范大学学报(自然科学版)》 2024年第4期15-20,共6页
研究了四阶全对称张量的极小模张量,得到了其极小模张量和极小模的完整分类表达式,并证明了其极小模张量与trace-free分解的等价关系.进一步,利用极小模的非负性证明了在单位球∑^(n+1)中任意的一个极小超曲面上M^(n)上,|▽^(2)h|^(2)≥... 研究了四阶全对称张量的极小模张量,得到了其极小模张量和极小模的完整分类表达式,并证明了其极小模张量与trace-free分解的等价关系.进一步,利用极小模的非负性证明了在单位球∑^(n+1)中任意的一个极小超曲面上M^(n)上,|▽^(2)h|^(2)≥3/2[S×trh^(4)+n×S-(trh^(3))^(2)-2×S^(2)]+3S(S-n)^(2)/2(n+4),并发现其等号成立时M^(n)包含了∑^(n+1)中所有圆心是球心的大圆及其部分和Clifford环∑^(k)(√k/n)×∑^(n-k)(√n-k/n). 展开更多
关键词 极小模原理 张量的trace-free分解 极小超曲面 Clifford环
在线阅读 下载PDF
弱B对称流形
17
作者 黄志明 甘丽宁 卢卫君 《数学杂志》 2024年第2期141-156,共16页
本文研究了一类特殊的对称流形(弱B对称流形,简记(WBS)n)的几何性质问题.利用B张量的对称性,获得了(WBS)n是一个2阶爱因斯坦流形的充分条件并证明这个流形是拟爱因斯坦流形.根据指标的轮换,分别获得了1-形式K和ω是闭形式的充要条件,继... 本文研究了一类特殊的对称流形(弱B对称流形,简记(WBS)n)的几何性质问题.利用B张量的对称性,获得了(WBS)n是一个2阶爱因斯坦流形的充分条件并证明这个流形是拟爱因斯坦流形.根据指标的轮换,分别获得了1-形式K和ω是闭形式的充要条件,继而考虑满足爱因斯坦度量条件的(WBS)_(n)(n>2).最后给出一个(WBS)_(4)的例子. 展开更多
关键词 弱B对称流形 2阶爱因斯坦流形 拟爱因斯坦流形 1-形式
在线阅读 下载PDF
带有含时组合源项的输运方程的黎曼问题
18
作者 韦晓跃 吴金柱 张宇 《西南民族大学学报(自然科学版)》 CAS 2024年第5期566-574,共9页
求解带有含时组合源项的输运方程的黎曼问题.首先,引入某个较一般的含时变量替换将非齐次含源系统转化为守恒律系统,并在守恒律框架下构造了包含δ-激波和真空的黎曼解.其次,借助适当的广义Rankine-Hugoniot条件和熵条件,建立了δ-激波... 求解带有含时组合源项的输运方程的黎曼问题.首先,引入某个较一般的含时变量替换将非齐次含源系统转化为守恒律系统,并在守恒律框架下构造了包含δ-激波和真空的黎曼解.其次,借助适当的广义Rankine-Hugoniot条件和熵条件,建立了δ-激波解的存在唯一性.结果表明,受源项影响,系统的黎曼解不再自相似,且所有的特征线均变为曲线.数值模拟证实了理论分析. 展开更多
关键词 输运方程 组合源项 黎曼问题 δ-激波 真空 数值模拟
在线阅读 下载PDF
THE GRADIENT ESTIMATE OF SUBELLIPTIC HARMONIC MAPS WITH A POTENTIAL
19
作者 Han LUO 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1189-1199,共11页
In this paper,we investigate subelliptic harmonic maps with a potential from noncompact complete sub-Riemannian manifolds corresponding to totally geodesic Riemannian foliations.Under some suitable conditions,we give ... In this paper,we investigate subelliptic harmonic maps with a potential from noncompact complete sub-Riemannian manifolds corresponding to totally geodesic Riemannian foliations.Under some suitable conditions,we give the gradient estimates of these maps and establish a Liouville type result. 展开更多
关键词 sub-Riemannian manifolds subelliptic harmonic maps with potential gradient estimate Liouville Theorem
在线阅读 下载PDF
具有射影向量场的近Ricci-Bourguignon孤立子
20
作者 张晓丽 刘建成 《吉林大学学报(理学版)》 CAS 北大核心 2024年第6期1359-1362,共4页
用几何分析的方法,研究具有射影向量场的近Ricci-Bourguignon孤立子.首先,证明势向量场是射影向量场的近Ricci-Bourguignon孤立子的Cot ton张量场为零,Bach张量场散度自由,Ricci张量场是共形Killing张量场;其次,证明势向量场为射影向量... 用几何分析的方法,研究具有射影向量场的近Ricci-Bourguignon孤立子.首先,证明势向量场是射影向量场的近Ricci-Bourguignon孤立子的Cot ton张量场为零,Bach张量场散度自由,Ricci张量场是共形Killing张量场;其次,证明势向量场为射影向量场的K-切触近Ricci-Bourguignon孤立子是Einstein流形. 展开更多
关键词 近Ricci-Bourguignon孤立子 射影向量场 共形Killing K-切触
在线阅读 下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部