K hler流形间的全纯等距嵌入问题是多复变领域的热点问题之一。单项式多面体是Hartogs三角形的非平凡推广,研究其与复欧氏空间是否具有公共子流形是有意义的。借助Nash函数的性质及二维单项式多面体的Bergman核函数,得到具有Bergman度...K hler流形间的全纯等距嵌入问题是多复变领域的热点问题之一。单项式多面体是Hartogs三角形的非平凡推广,研究其与复欧氏空间是否具有公共子流形是有意义的。借助Nash函数的性质及二维单项式多面体的Bergman核函数,得到具有Bergman度量的二维单项式多面体与具有平坦度量的复欧氏空间不存在公共的K hler子流形,即二维单项式多面体与复欧氏空间是不相关的。展开更多
In order to find closed form solutions of nonintegrable nonlinear ordinary differential equations,numerous tricks have been proposed.The goal of this short review is to explain how a theorem of Eremenko on meromorphic...In order to find closed form solutions of nonintegrable nonlinear ordinary differential equations,numerous tricks have been proposed.The goal of this short review is to explain how a theorem of Eremenko on meromorphic solutions of some nonlinear ODEs together with some classical,19th-century results,can be turned into algorithms(thus avoiding ad hoc assumptions)which provide all(as opposed to some)solutions in a precise class.To illustrate these methods,we present some new such exact solutions,physically relevant.展开更多
基金partially supported by RGC(No.17307420)supported by NSFC(No.12471077)。
文摘In order to find closed form solutions of nonintegrable nonlinear ordinary differential equations,numerous tricks have been proposed.The goal of this short review is to explain how a theorem of Eremenko on meromorphic solutions of some nonlinear ODEs together with some classical,19th-century results,can be turned into algorithms(thus avoiding ad hoc assumptions)which provide all(as opposed to some)solutions in a precise class.To illustrate these methods,we present some new such exact solutions,physically relevant.