For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial...For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.展开更多
为了研究对任意素数模p的一类广义Kloosterman和的四次均值,利用初等与解析方法、Gauss和以及三角和的转换性质引入了当素数p≡1 mod 4时该均值的计算问题,并将该类均值转化为特征和的简易形式。从计算结果上对均值的估计具有充分性,从...为了研究对任意素数模p的一类广义Kloosterman和的四次均值,利用初等与解析方法、Gauss和以及三角和的转换性质引入了当素数p≡1 mod 4时该均值的计算问题,并将该类均值转化为特征和的简易形式。从计算结果上对均值的估计具有充分性,从计算方法上对广义Kloosterman和各种形式的四次均值研究具有重要的参考价值。此外,这也为指数和均值计算问题提供了一种新的转化思路与方法,必将对有关问题的进一步探索起到推动作用。展开更多
基金Supported by Projects from Chongqing Municipal Science and Technology Commission(CSTB2022NSCQ-MSX0445)。
文摘For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.
文摘为了研究对任意素数模p的一类广义Kloosterman和的四次均值,利用初等与解析方法、Gauss和以及三角和的转换性质引入了当素数p≡1 mod 4时该均值的计算问题,并将该类均值转化为特征和的简易形式。从计算结果上对均值的估计具有充分性,从计算方法上对广义Kloosterman和各种形式的四次均值研究具有重要的参考价值。此外,这也为指数和均值计算问题提供了一种新的转化思路与方法,必将对有关问题的进一步探索起到推动作用。