期刊文献+

椭圆曲线y^(2)=x^(3)+27x-172的整数点

Integral Points on the Elliptic Curve y^(2)=x^(3)+27x-172
在线阅读 下载PDF
导出
摘要 运用同余、递归序列、二次剩余等初等方法,研讨椭圆曲线y^(2)=x^(3)+27x-172上的整数点问题,证明其仅有整数点(x,y)=(4,0),(16,±66). Using elementary methods such as congruences,recurrence sequences,and quadratic residues,this paper investigates the integral points on the elliptic curve y^(2)=x^(3)+27x-172,proving that the only integral points are(x,y)=(4,0)and(16,±66).
作者 崔保军 CUI Bao-jun(School of Mathematics Science,Gansu Minzu Normal University,Hezuo,Gansu 747000,China)
出处 《河北北方学院学报(自然科学版)》 2025年第11期1-5,58,共6页 Journal of Hebei North University(Natural Science Edition)
基金 甘肃省第七批省级科技计划项目(自然科学基金)(No.21JR7RP859)。
关键词 椭圆曲线 同余 整数点 递推序列 Elliptic curve Congruence Integral points Recurrent sequence
  • 相关文献

参考文献5

二级参考文献30

  • 1Baker A.Linear forms in the logarithms of algebraic number Ⅰ.Mathematika,1966.13:204-216; Ⅱ ibid,1967,14:102-107:Ⅲ ibid,1967.14:220-228; Ⅳ ibid; 1968,15:204-216.
  • 2Stroeker R J,Tzanakis N.Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms.Acta Arith,1994,29(2):177-196.
  • 3Stroeker R J,Tzanakis N.On the elliptic logarithm method for elliptic diophantine equations:reflections and an improvement.Experimental Mathemetics,1999,8(2):135-149.
  • 4Stroeker R J,Tzanakis N.Computing all integer solutions of a genus 1 equation.Math Comp.,2003,72:1917-1933.
  • 5Bremner A,Tzanakis N.Integral points on y2=x3-7x+10.Math Comp.,1983,41(164):731-741.
  • 6Zhu Hui Lin,Chen Jian Hun.Integral point on a class of elliptic curve.Wuhan University-Journal of Natural Sciences,2006,11(3):477-480.
  • 7Zhu Hui Lin,Chen Jian Hua.Integral point on certain elliptic curve.Padova:Rend.Sem.Mat.Univ.,2008,119:1-20.
  • 8Zagier D.Large integral point on elliptic curves.Math Comp.,1987,48(177):425-536.
  • 9Hua Luo Geng.Introduction to number theory.Beijing:Science Press,1979.
  • 10Buchmann J.A generalization of Voronoi's unit algorithm (ⅠⅡ).Journal of Number Theory,1985,20:177-209.

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部