In this study,we examine the dynamics and microphysical structures of a deep compact thunderstorm event driving cloud-to-ground(CG)lightning over the Nanjing area located within the Yangtze-Huai River Basin(YHRB)durin...In this study,we examine the dynamics and microphysical structures of a deep compact thunderstorm event driving cloud-to-ground(CG)lightning over the Nanjing area located within the Yangtze-Huai River Basin(YHRB)during the monsoon break period.The microphysical structures combined with the dynamics in the glaciated,mixed-phase,and warm-phase layers during the formative,intensifying,and mature stages of the thunderstorm were first investigated using C-band polarimetric radar and CG lightning observations.The results show that the mature phase of the thunderstorm produced a local cold pool,which collided with a southerly warm wind,resulting in a strong updraft.The strong updraft favored the lifting of raindrops to the mixed-phase region to form abundant supercooled liquid water and graupel.From the formative stage to the developing stage and further to the mature stage,increased ZH-and reduced ZDR-values within the mixed-phase region are found,especially within the strong updraft region(>5 m s^(-1)).This phenomenon suggests that supercooled raindrops evolved into large hydrometeors(graupel and hail),indicative of a strong riming process.The signatures within this region are consistent with a favorable environment for thunderstorm electrification and generate the most frequent lightning during the thunderstorm life cycle.展开更多
基金primarily supported by the National Natural Science Foundation of China(Grant Nos.42025501,41805025,42175005,and 61827901)the National Key R&D Program of China(2022YFC3003905)+5 种基金the National Key Laboratory on Electromagnetic Environmental Effects and Electro-optical Engineering(NO.JCKYS61422062101)the Meteorological Union Fund of the National Natural Science Foundation of China(U2142203)the Foundation of Jiangsu Provincial Meteorological Bureau(KM202308)The Open Grants of China Meteorological Administration Radar Meteorology Key Laboratory(2023LRMB04)S&T Development Fund of NJIAS(KJF202307)the Open Research Program of the State Key Laboratory of Severe Weather(2022LASW-A01)。
文摘In this study,we examine the dynamics and microphysical structures of a deep compact thunderstorm event driving cloud-to-ground(CG)lightning over the Nanjing area located within the Yangtze-Huai River Basin(YHRB)during the monsoon break period.The microphysical structures combined with the dynamics in the glaciated,mixed-phase,and warm-phase layers during the formative,intensifying,and mature stages of the thunderstorm were first investigated using C-band polarimetric radar and CG lightning observations.The results show that the mature phase of the thunderstorm produced a local cold pool,which collided with a southerly warm wind,resulting in a strong updraft.The strong updraft favored the lifting of raindrops to the mixed-phase region to form abundant supercooled liquid water and graupel.From the formative stage to the developing stage and further to the mature stage,increased ZH-and reduced ZDR-values within the mixed-phase region are found,especially within the strong updraft region(>5 m s^(-1)).This phenomenon suggests that supercooled raindrops evolved into large hydrometeors(graupel and hail),indicative of a strong riming process.The signatures within this region are consistent with a favorable environment for thunderstorm electrification and generate the most frequent lightning during the thunderstorm life cycle.