Devising robust S-scheme photocatalysts is of central importance for achieving high-efficient micropollu-tant decontamination.However,the conscious optimization of S-scheme system with high performance remains a prime...Devising robust S-scheme photocatalysts is of central importance for achieving high-efficient micropollu-tant decontamination.However,the conscious optimization of S-scheme system with high performance remains a prime challenge.Herein,carbon quantum dots(CDs)and Mn_(0.5)Cd_(0.5)S(MCS)are mounted on BiOBr(BOB)microspheres,establishing an advanced S-scheme heterojunction with interfacial Bi-S bond.The interfacial Bi-S bonds function as superb channels at atomic-scale to abate the energy barrier for S-scheme charge transportation.Meanwhile,CDs serve as electron collectors to preserve highly reductive electrons from MCS,further augmenting the spatial separation of photo-carriers.Therefore,the optimized CDs/MCS/BOB(MBC)heterojunction manifests significantly strengthened tetracycline hydrochloride(TC)destruction activity and its reaction rate constant is approximately 3.1,2.2,2.1,and 1.5 folds that than that of MCS,BOB,BOB/CDs and MCS/BOB.In addition,MBC exhibits high stability and significant resistance to environmental interferences.The toxicology evaluation confirms the effective abatement of toxicity of TC after treatment.This achievement demonstrates the benefits of CDs-optimized S-scheme photosystems with chemical bonds for photocatalytic water decontamination.展开更多
Devising S-scheme heterostructure is considered as a cutting-edge strategy for advanced photocatalysts with effectively segregated photo-carriers and prominent redox potential for emerging organic pollutants control.H...Devising S-scheme heterostructure is considered as a cutting-edge strategy for advanced photocatalysts with effectively segregated photo-carriers and prominent redox potential for emerging organic pollutants control.Herein,an S-scheme Ag_(2)CO_(3)/C_(3)N_(5) heterojunction photocatalyst was developed via a simple in situ chemical deposition procedure,and further photoreduction operation made metallic Ag(size:3.5–12.5 nm)being in situ formed on Ag_(2)CO_(3)/C_(3)N_(5) for a plasmonic S-scheme Ag/Ag_(2)CO_(3)/C_(3)N_(5) heterojunction photocatalyst.Consequently,Ag/Ag_(2)CO_(3)/C_(3)N_(5) manifests pronouncedly upgraded photocatalytic performance toward oxytetracycline degradation with a superior photoreaction rate constant of 0.0475 min‒1,which is 13.2,3.9 and 2.2 folds that of C_(3)N_(5),Ag_(2)CO_(3),and Ag_(2)CO_(3)/C_(3)N_(5),respectively.As evidenced by comprehensive characterizations and density functional theory calculations,the localized surface plasmon resonance effect of metallic Ag and the unique S-scheme charge transfer mechanism in 0D/0D/2D Ag/Ag_(2)CO_(3)/C_(3)N_(5) collaboratively strengthen the visible-light absorption,and facilitate the effective separation of powerful charge carriers,thereby significantly promoting the generation of reactive species like·OH^(-),h^(+)and·O_(2)^(-)for efficient oxytetracycline destruction.Moreover,four consecutive cycles demonstrate the reusability of Ag/Ag_(2)CO_(3)/C_(3)N_(5).Furthermore,the authentic water purification tests affirm its practical application potential.This work not only provides a candidate strategy for advancing S-scheme heterojunction photocatalysts but also makes a certain contribution to water decontamination.展开更多
The industrial implementation of Solar-driven photocatalysis is hampered by inefficient charge separation,poor reusability and hard retrieval of powdery catalysts.To conquer these drawbacks,a self-floating S-scheme Bi...The industrial implementation of Solar-driven photocatalysis is hampered by inefficient charge separation,poor reusability and hard retrieval of powdery catalysts.To conquer these drawbacks,a self-floating S-scheme Bi_(4)O_(5)Br_(2)/P-doped C_(3)N_(4)/carbon fiber cloth(BB/PN/CC)composed of carbon fibers(CC)as the core and Bi_(4)O_(5)Br_(2)/P-doped C_(3)N_(4)(BB/PN)nanosheets as the shell was constructed as a competent,recyclable cloth-shaped photocatalyst for safe and efficient degradation of aquacultural antibiotics.The BB/PN/CC fabric achieves an exceptional tetracycline degradation rate constant of 0.0118 min‒1,surpassing CN/CC(0.0015 min^(‒1)),BB/CC(0.0066 min^(‒1))and PN/CC(0.0023 min^(‒1))by 6.9,0.8 and 4.1 folds,respectively.Beyond its catalytic prowess,the photocatalyst’s practical superiority is evident in its effortless recovery and environmental adaptability.The superior catalytic effectiveness stems from the S-scheme configuration,which retains the maximum redox capacities of the constituent BB and PN while enabling efficient spatial detachment of photo-carriers.X-ray photoelectron spectroscopy(XPS),in-situ XPS,and electron paramagnetic resonance analyses corroborate the S-scheme mechanism,revealing electron accumulation on PN and hole retention on BB under illumination.Density functional theory calculations further confirm S-scheme interfacial charge redistribution and internal electric field formation.This study advances the design of macroscopic S-scheme heterojunction photocatalysts for sustainable water purification.展开更多
The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium prese...The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.展开更多
Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and...Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and metastasis.However,conventional two-dimensional cell culture and animal models have limitations in studying the influence of tumor microenvironment on cancer cell migration.Fortunately,the further development of microfluidic technology has provided solutions for the study of such questions.We utilize microfluidic chip to build a random collagen fiber microenvironment(RFM)model and an oriented collagen fiber microenvironment(OFM)model that resemble early stage and late stage breast cancer microenvironments,respectively.By combining cell culture,biochemical concentration gradient construction,and microscopic imaging techniques,we investigate the impact of different collagen fiber biochemical microenvironments on the migration of breast cancer MDA-MB-231-RFP cells.The results show that MDA-MB-231-RFP cells migrate further in the OFM model compared to the RFM model,with significant differences observed.Furthermore,we establish concentration gradients of the anticancer drug paclitaxel in both the RFM and OFM models and find that paclitaxel significantly inhibits the migration of MDA-MB-231-RFP cells in the RFM model,with stronger inhibition on the high concentration side compared to the low concentration side.However,the inhibitory effect of paclitaxel on the migration of MDA-MB-231-RFP cells in the OFM model is weak.These findings suggest that the oriented collagen fiber microenvironment resembling the late-stage tumor microenvironment is more favorable for cancer cell migration and that the effectiveness of anticancer drugs is diminished.The RFM and OFM models constructed in this study not only provide a platform for studying the mechanism of cancer development,but also serve as a tool for the initial measurement of drug screening.展开更多
<div style="text-align:justify;"> Water is the key factor to ensure plant survival in the process of ecological restoration in the coal base of China northwest deserts. On the premise of meeting the mi...<div style="text-align:justify;"> Water is the key factor to ensure plant survival in the process of ecological restoration in the coal base of China northwest deserts. On the premise of meeting the mine production and living water demands, we should take measures such as dirt wastewater treatment and water-saving irrigation to increase income and reduce expenditure and allocate limited water re-sources rationally, to provide mining area ecological restoration maximum usable water resources. The mining dump has large slope and thin soil layer and it is easy to produce surface runoff. So it is particularly important to study the irrigation technology needed to satisfy vegetation restoration, on the premise of guaranteeing not to produce surface runoff and the slope stability. In this paper, through field plot test, the suitable irrigation method for mine slope, slope surface soil moisture migration characteristics and slope stability analysis were studied. Results show that three slope ir-rigation technologies have their own advantages and disadvantages. On the whole, the effect of drip irrigation is the best, micro spray irrigation is the second, infiltrating irrigation is not ideal. The permeability of mine soil slope is very strong, the infiltration rate of the slope direction is the high-est, inverse slope infiltration rate is lowest. In the process of irrigation, with the increase of soil moisture content, slope safety factor is the decreased obviously, the whole slope surface soil moisture content is 14% for the slope stability safety threshold. </div>展开更多
Enlightened by natural photosynthesis,developing efficient S-scheme heterojunction photocatalysts for deleterious pollutant removal is of prime importance to restore environment.Herein,novel TaON/Bi_(2)WO_(6) S-scheme...Enlightened by natural photosynthesis,developing efficient S-scheme heterojunction photocatalysts for deleterious pollutant removal is of prime importance to restore environment.Herein,novel TaON/Bi_(2)WO_(6) S-scheme heterojunction nanofibers were designed and developed by in-situ growing Bi_(2)WO_(6) nanosheets with oxygen vacancies(OVs)on TaON nanofibers.Thanks to the efficiently spatial charge disassociation and preserved great redox power by the unique S-scheme mechanism and OVs,as well as firmly interfacial contact by the core-shell 1D/2D fibrous hetero-structure via the in-situ growth,the optimized TaON/Bi_(2)WO_(6) heterojunction unveils exceptional visible-light photocatalytic property for abatement of tetracycline(TC),levofloxacin(LEV),and Cr(Ⅵ),respectively by 2.8-fold,1.0-fold,and 1.9-fold enhancement compared to the bare Bi_(2)WO_(6),while maintaining satisfactory stability.Furthermore,the systematic photoreaction tests indicate Ta-ON/Bi_(2)WO_(6) has the high practicality in the elimination of pollutants in aquatic environment.The degradation pathway of tetracycline and intermediate eco-toxicity were determined based on HPLC–MS combined with QSAR calculation,and a possible photocatalytic mechanism was elucidated.This work provides a guideline for designing high-performance TaON-based S-scheme photocatalysts with defects for environment protection.展开更多
Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations o...Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations of 1% (KI), 3% ([(2), 6% (K3) and 9% (l(4) were tested for wheat straw pretreatment at ambient temperature with a C:N ratio of 25:1.86% of total solids (TS), 89% of volatile solids (VS) and 22% of lignocellulose, cellulose and hemi- cellulose (LCH) (22%) were decomposed effectively with the wheat straw pretreated by 6% KOH. Enhanced bio- gas production and cumulative biomethane yield of 258 ml. (g VS)-1 were obtained increased by 45% and 41% respectively, compared with untreated wheat straw. Pretreated wheat straw digestion also yielded a digestate with higher fertilizer values potassium (l 38%), calcium (22%) and magnesium (16%). These results show that TS, VS and LCH can be effectively removed from wheat straw pretreated with KOH, improving biodegradability biomethane production and fertilizer value.展开更多
S-scheme heterojunction photocatalysts have been the“stars”in the field of photocatalysis.Herein,a novel S-scheme heterojunction of Ta_(3)N_(5)/BiOCl with oxygen vacancies(OVs)was fabricated via a facile method.The ...S-scheme heterojunction photocatalysts have been the“stars”in the field of photocatalysis.Herein,a novel S-scheme heterojunction of Ta_(3)N_(5)/BiOCl with oxygen vacancies(OVs)was fabricated via a facile method.The charge separation and transport mechanism of this Ta_(3)N_(5)/BiOCl S-scheme heterojunction was verified by the analyses of band energy structures,active species,photoelectric behaviors and DFT theoretical calculation.Compared with Ta_(3)N_(5)and BiOCl,the Ta_(3)N_(5)/BiOCl unveils substantially upgraded photocatalytic property under visible light,and the photocatalytic efficiency for removal of tetracycline(TC)and hexavalent chromium(Cr(VI))reaches 89.6%and 91.6%,respectively.The substantial enhancement of the photocatalytic activity is attributed to the synergistic effect of the S-scheme hetero-structure and oxygen vacancies,which improves the visible-light absorption,while promoting the spatial separation of charge carriers with the optimum redox capacity,thereby boosting the production of active species for catalytic reactions.The TC degradation pathway is deduced and the toxicity evolution of TC is appraised using the QSAR method.In a nutshell,this work gives a deep understanding of the photocatalytic mechanism based on Ta_(3)N_(5)/BiOCl as well as presents a newfangled thought for developing highly efficient S-scheme heterojunction photocatalysts for water decontamination.展开更多
With a large number of researches being conducted on two?dimen?sional(2D) materials, their unique properties in optics, electrics, mechanics, and magnetics have attracted increasing attention. Accordingly, the idea of...With a large number of researches being conducted on two?dimen?sional(2D) materials, their unique properties in optics, electrics, mechanics, and magnetics have attracted increasing attention. Accordingly, the idea of combining distinct functional 2D materials into heterostructures naturally emerged that pro?vides unprecedented platforms for exploring new physics that are not accessible in a single 2D material or 3D heterostructures. Along with the rapid development of controllable, scalable, and programmed synthesis techniques of high?quality 2D heterostructures, various heterostructure devices with extraordinary performance have been designed and fabricated, including tunneling transistors, photodetectors, and spintronic devices. In this review, we present a summary of the latest progresses in fabrications, properties, and applications of di erent types of 2D heterostruc?tures, followed by the discussions on present challenges and perspectives of further investigations.展开更多
Spintronics,exploiting the spin degree of electrons as the information vector,is an attractive field for implementing the beyond Complemetary metal-oxide-semiconductor(CMOS)devices.Recently,two-dimensional(2D)material...Spintronics,exploiting the spin degree of electrons as the information vector,is an attractive field for implementing the beyond Complemetary metal-oxide-semiconductor(CMOS)devices.Recently,two-dimensional(2D)materials have been drawing tremendous attention in spintronics owing to their distinctive spin-dependent properties,such as the ultralong spin relaxation time of graphene and the spin-valley locking of transition metal dichalcogenides.Moreover,the related heterostructures provide an unprecedented probability of combining the di erent characteristics via proximity e ect,which could remedy the limitation of individual 2D materials.Hence,the proximity engineering has been growing extremely fast and has made significant achievements in the spin injection and manipulation.Nevertheless,there are still challenges toward practical application;for example,the mechanism of spin relaxation in 2D materials is unclear,and the high-effciency spin gating is not yet achieved.In this review,we focus on 2D materials and related heterostructures to systematically summarize the progress of the spin injection,transport,manipulation,and application for information storage and processing.We also highlight the current challenges and future perspectives on the studies of spintronic devices based on 2D materials.展开更多
Three-dimensional crack closure correction methods are investigated in this paper.The fatigue crack growth tests of surface cracks in 14MnNbq steel for bridge plate subjected to tensile and bending loadings are system...Three-dimensional crack closure correction methods are investigated in this paper.The fatigue crack growth tests of surface cracks in 14MnNbq steel for bridge plate subjected to tensile and bending loadings are systematically conducted.The experimentally measured fatigue crack growth rates of surface cracks are compared with those of through-thickness cracks in detail.It is found that the crack growth rates of surface cracks are lower than those of through-thickness cracks.In order to correct their differences in fatigue crack growth rates, a dimensionless crack closure correction model is proposed.Although this correction model is determined only by the experimental data of surface cracks under tensile loading with a constant ratio R=0.05, it can correlate the surface crack growth rates with reasonable accuracy under tensile and bending loadings with various stress ratios ranging from 0 to 0.5.Furthermore, predictions of fatigue life and crack aspect ratio for surface cracks are discussed, and the predicted results are also compared with those obtained from other prediction approaches.Comparison results show that the proposed crack closure correction model gives better prediction of fatigue life than other models.展开更多
Fluorescence lifetime imaging microscopy(FLIM)has been rapidly developed over the past 30 years and widely applied in biomedical engineering.Recent progress in fluorophore-dyed probe design has widened the application...Fluorescence lifetime imaging microscopy(FLIM)has been rapidly developed over the past 30 years and widely applied in biomedical engineering.Recent progress in fluorophore-dyed probe design has widened the application prospects of fluorescence.Because fluorescence lifetime is sensitive to microenvironments and molecule alterations,FLIM is promising for the detection of pathological conditions.Current cancer-related FLIM applications can be divided into three main categories:(i)FLIM with autofluorescence molecules in or out of a cell,especially with reduced form of nicotinamide adenine dinucleotide,and flavin adenine dinucleotide for cellular metabolism research;(ii)FLIM with Förster resonance energy transfer for monitoring protein interactions;and(iii)FLIM with fluorophore-dyed probes for specific aberration detection.Advancements in nanomaterial production and efficient calculation systems,as well as novel cancer biomarker discoveries,have promoted FLIM optimization,offering more opportunities for medical research and applications to cancer diagnosis and treatment monitoring.This review summarizes cutting-edge researches from 2015 to 2020 on cancer-related FLIM applications and the potential of FLIM for future cancer diagnosis methods and anti-cancer therapy development.We also highlight current challenges and provide perspectives for further investigation.展开更多
Boundary effect and time-reversal symmetry are hot topics in active matter. We present a biology-inspired robotenvironment-interaction active matter system with the field-drive motion and the rules of resource search,...Boundary effect and time-reversal symmetry are hot topics in active matter. We present a biology-inspired robotenvironment-interaction active matter system with the field-drive motion and the rules of resource search, resource consumption, and resource recovery. In an environmental compression–expansion cycle, the swarm emerges a series of boundary-dependent phase transitions, and the whole evolution process is time-reversal symmetry-breaking;we call this phenomenon “orderly hysteresis”. We present the influence of the environmental recovery rate on the dynamic collective behavior of the swarm.展开更多
The development of distinguished photocatalysts with high photo-carrier disassociation and photo-redox power for efficient elimination of pollutants in water is of great significance but still a grand challenge.Herein...The development of distinguished photocatalysts with high photo-carrier disassociation and photo-redox power for efficient elimination of pollutants in water is of great significance but still a grand challenge.Herein,a novel Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) S-scheme heterojunction was built up by integrating Cd0.5Zn0.5S nanoparticles on Bi2WO6 microspheres via a simple route.The S-scheme charge transfer mode substantially boosts the high-energetic electrons/holes spatial detachment and conservation on the Cd_(0.5)Zn_(0.5)S(reduction)and Bi_(2)WO_(6)(oxidation),respectively,as well as effectively suppresses the photo-corrosion of Cd_(0.5)Zn_(0.5)S,rendering Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) photocatalysts with superior redox ability.The optimal Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) heterojunction achieves exceptional visible-light-driven photocatalytic tetracycline degradation and Cr(VI)reduction efficiency,3.2(1.9)-time and 33.6(1.6)-time stronger than that of neat Bi_(2)WO_(6)(Cd_(0.5)Zn_(0.5)S),while retaining the superior stability and reusability.Quenching test,mass spectrometry analysis,and toxicity assessment based on Quantitative Structure Activity Relationships.calculation unravel the prime active substances,intermediates,photo-degradation pathway,and intermediate eco-toxicity in photocatalytic process.This research not only offers a potential photocatalyst for aquatic environment protection but also promotes the exploration of novel and powerful chalcogenides-based S-scheme photocatalysts for environment protection.展开更多
基金supported by the NSFC-Zhejiang Joint Fund for Integration of Industrialization and Diversification(No.U1809214)the Natural Science Foundation of Zhejiang Province(Nos.LTGN23E080001 and LY20E080014)+1 种基金the Science and Technology Project of Zhoushan(No.2022C41011)the National Natural Science Foundation of China(No.22201251).
文摘Devising robust S-scheme photocatalysts is of central importance for achieving high-efficient micropollu-tant decontamination.However,the conscious optimization of S-scheme system with high performance remains a prime challenge.Herein,carbon quantum dots(CDs)and Mn_(0.5)Cd_(0.5)S(MCS)are mounted on BiOBr(BOB)microspheres,establishing an advanced S-scheme heterojunction with interfacial Bi-S bond.The interfacial Bi-S bonds function as superb channels at atomic-scale to abate the energy barrier for S-scheme charge transportation.Meanwhile,CDs serve as electron collectors to preserve highly reductive electrons from MCS,further augmenting the spatial separation of photo-carriers.Therefore,the optimized CDs/MCS/BOB(MBC)heterojunction manifests significantly strengthened tetracycline hydrochloride(TC)destruction activity and its reaction rate constant is approximately 3.1,2.2,2.1,and 1.5 folds that than that of MCS,BOB,BOB/CDs and MCS/BOB.In addition,MBC exhibits high stability and significant resistance to environmental interferences.The toxicology evaluation confirms the effective abatement of toxicity of TC after treatment.This achievement demonstrates the benefits of CDs-optimized S-scheme photosystems with chemical bonds for photocatalytic water decontamination.
文摘Devising S-scheme heterostructure is considered as a cutting-edge strategy for advanced photocatalysts with effectively segregated photo-carriers and prominent redox potential for emerging organic pollutants control.Herein,an S-scheme Ag_(2)CO_(3)/C_(3)N_(5) heterojunction photocatalyst was developed via a simple in situ chemical deposition procedure,and further photoreduction operation made metallic Ag(size:3.5–12.5 nm)being in situ formed on Ag_(2)CO_(3)/C_(3)N_(5) for a plasmonic S-scheme Ag/Ag_(2)CO_(3)/C_(3)N_(5) heterojunction photocatalyst.Consequently,Ag/Ag_(2)CO_(3)/C_(3)N_(5) manifests pronouncedly upgraded photocatalytic performance toward oxytetracycline degradation with a superior photoreaction rate constant of 0.0475 min‒1,which is 13.2,3.9 and 2.2 folds that of C_(3)N_(5),Ag_(2)CO_(3),and Ag_(2)CO_(3)/C_(3)N_(5),respectively.As evidenced by comprehensive characterizations and density functional theory calculations,the localized surface plasmon resonance effect of metallic Ag and the unique S-scheme charge transfer mechanism in 0D/0D/2D Ag/Ag_(2)CO_(3)/C_(3)N_(5) collaboratively strengthen the visible-light absorption,and facilitate the effective separation of powerful charge carriers,thereby significantly promoting the generation of reactive species like·OH^(-),h^(+)and·O_(2)^(-)for efficient oxytetracycline destruction.Moreover,four consecutive cycles demonstrate the reusability of Ag/Ag_(2)CO_(3)/C_(3)N_(5).Furthermore,the authentic water purification tests affirm its practical application potential.This work not only provides a candidate strategy for advancing S-scheme heterojunction photocatalysts but also makes a certain contribution to water decontamination.
文摘The industrial implementation of Solar-driven photocatalysis is hampered by inefficient charge separation,poor reusability and hard retrieval of powdery catalysts.To conquer these drawbacks,a self-floating S-scheme Bi_(4)O_(5)Br_(2)/P-doped C_(3)N_(4)/carbon fiber cloth(BB/PN/CC)composed of carbon fibers(CC)as the core and Bi_(4)O_(5)Br_(2)/P-doped C_(3)N_(4)(BB/PN)nanosheets as the shell was constructed as a competent,recyclable cloth-shaped photocatalyst for safe and efficient degradation of aquacultural antibiotics.The BB/PN/CC fabric achieves an exceptional tetracycline degradation rate constant of 0.0118 min‒1,surpassing CN/CC(0.0015 min^(‒1)),BB/CC(0.0066 min^(‒1))and PN/CC(0.0023 min^(‒1))by 6.9,0.8 and 4.1 folds,respectively.Beyond its catalytic prowess,the photocatalyst’s practical superiority is evident in its effortless recovery and environmental adaptability.The superior catalytic effectiveness stems from the S-scheme configuration,which retains the maximum redox capacities of the constituent BB and PN while enabling efficient spatial detachment of photo-carriers.X-ray photoelectron spectroscopy(XPS),in-situ XPS,and electron paramagnetic resonance analyses corroborate the S-scheme mechanism,revealing electron accumulation on PN and hole retention on BB under illumination.Density functional theory calculations further confirm S-scheme interfacial charge redistribution and internal electric field formation.This study advances the design of macroscopic S-scheme heterojunction photocatalysts for sustainable water purification.
基金supported by the National Natural Science Foundation of China(22078251)Hubei Province Key Research and Development Program(2023DJC167)the research project of Hubei Provincial Department of Education(D20191504).
文摘The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.
基金support from the National Natural Science Foundation of China(Grant Nos.11974066,12174041,12104134,T2350007,and 12347178)the Fundamental and Advanced Research Program of Chongqing(Grant No.cstc2019jcyj-msxm X0477)+3 种基金the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQMSX1260)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202301333)the Scientific Research Fund of Chongqing University of Arts and Sciences(Grant Nos.R2023HH03 and P2022HH05)College Students’Innovation and Entrepreneurship Training Program of Chongqing Municipal(Grant No.S202310642002)。
文摘Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and metastasis.However,conventional two-dimensional cell culture and animal models have limitations in studying the influence of tumor microenvironment on cancer cell migration.Fortunately,the further development of microfluidic technology has provided solutions for the study of such questions.We utilize microfluidic chip to build a random collagen fiber microenvironment(RFM)model and an oriented collagen fiber microenvironment(OFM)model that resemble early stage and late stage breast cancer microenvironments,respectively.By combining cell culture,biochemical concentration gradient construction,and microscopic imaging techniques,we investigate the impact of different collagen fiber biochemical microenvironments on the migration of breast cancer MDA-MB-231-RFP cells.The results show that MDA-MB-231-RFP cells migrate further in the OFM model compared to the RFM model,with significant differences observed.Furthermore,we establish concentration gradients of the anticancer drug paclitaxel in both the RFM and OFM models and find that paclitaxel significantly inhibits the migration of MDA-MB-231-RFP cells in the RFM model,with stronger inhibition on the high concentration side compared to the low concentration side.However,the inhibitory effect of paclitaxel on the migration of MDA-MB-231-RFP cells in the OFM model is weak.These findings suggest that the oriented collagen fiber microenvironment resembling the late-stage tumor microenvironment is more favorable for cancer cell migration and that the effectiveness of anticancer drugs is diminished.The RFM and OFM models constructed in this study not only provide a platform for studying the mechanism of cancer development,but also serve as a tool for the initial measurement of drug screening.
文摘<div style="text-align:justify;"> Water is the key factor to ensure plant survival in the process of ecological restoration in the coal base of China northwest deserts. On the premise of meeting the mine production and living water demands, we should take measures such as dirt wastewater treatment and water-saving irrigation to increase income and reduce expenditure and allocate limited water re-sources rationally, to provide mining area ecological restoration maximum usable water resources. The mining dump has large slope and thin soil layer and it is easy to produce surface runoff. So it is particularly important to study the irrigation technology needed to satisfy vegetation restoration, on the premise of guaranteeing not to produce surface runoff and the slope stability. In this paper, through field plot test, the suitable irrigation method for mine slope, slope surface soil moisture migration characteristics and slope stability analysis were studied. Results show that three slope ir-rigation technologies have their own advantages and disadvantages. On the whole, the effect of drip irrigation is the best, micro spray irrigation is the second, infiltrating irrigation is not ideal. The permeability of mine soil slope is very strong, the infiltration rate of the slope direction is the high-est, inverse slope infiltration rate is lowest. In the process of irrigation, with the increase of soil moisture content, slope safety factor is the decreased obviously, the whole slope surface soil moisture content is 14% for the slope stability safety threshold. </div>
文摘Enlightened by natural photosynthesis,developing efficient S-scheme heterojunction photocatalysts for deleterious pollutant removal is of prime importance to restore environment.Herein,novel TaON/Bi_(2)WO_(6) S-scheme heterojunction nanofibers were designed and developed by in-situ growing Bi_(2)WO_(6) nanosheets with oxygen vacancies(OVs)on TaON nanofibers.Thanks to the efficiently spatial charge disassociation and preserved great redox power by the unique S-scheme mechanism and OVs,as well as firmly interfacial contact by the core-shell 1D/2D fibrous hetero-structure via the in-situ growth,the optimized TaON/Bi_(2)WO_(6) heterojunction unveils exceptional visible-light photocatalytic property for abatement of tetracycline(TC),levofloxacin(LEV),and Cr(Ⅵ),respectively by 2.8-fold,1.0-fold,and 1.9-fold enhancement compared to the bare Bi_(2)WO_(6),while maintaining satisfactory stability.Furthermore,the systematic photoreaction tests indicate Ta-ON/Bi_(2)WO_(6) has the high practicality in the elimination of pollutants in aquatic environment.The degradation pathway of tetracycline and intermediate eco-toxicity were determined based on HPLC–MS combined with QSAR calculation,and a possible photocatalytic mechanism was elucidated.This work provides a guideline for designing high-performance TaON-based S-scheme photocatalysts with defects for environment protection.
基金Supported by Specialized Research Fund for the Doctoral Program of Higer Education(20120010110004)the Natural Science Foundation of Beijing(8142030)
文摘Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations of 1% (KI), 3% ([(2), 6% (K3) and 9% (l(4) were tested for wheat straw pretreatment at ambient temperature with a C:N ratio of 25:1.86% of total solids (TS), 89% of volatile solids (VS) and 22% of lignocellulose, cellulose and hemi- cellulose (LCH) (22%) were decomposed effectively with the wheat straw pretreated by 6% KOH. Enhanced bio- gas production and cumulative biomethane yield of 258 ml. (g VS)-1 were obtained increased by 45% and 41% respectively, compared with untreated wheat straw. Pretreated wheat straw digestion also yielded a digestate with higher fertilizer values potassium (l 38%), calcium (22%) and magnesium (16%). These results show that TS, VS and LCH can be effectively removed from wheat straw pretreated with KOH, improving biodegradability biomethane production and fertilizer value.
基金financially supported by the Natural Science Foundation of Zhejiang Province(No.LY20E080014)the National Natural Science Foundation of China(No.51708504)+1 种基金National Natural Science Foundation of China(No.21975084)the Science and Technology Project of Zhoushan City(No.2020C21009 and 2022C41011)。
文摘S-scheme heterojunction photocatalysts have been the“stars”in the field of photocatalysis.Herein,a novel S-scheme heterojunction of Ta_(3)N_(5)/BiOCl with oxygen vacancies(OVs)was fabricated via a facile method.The charge separation and transport mechanism of this Ta_(3)N_(5)/BiOCl S-scheme heterojunction was verified by the analyses of band energy structures,active species,photoelectric behaviors and DFT theoretical calculation.Compared with Ta_(3)N_(5)and BiOCl,the Ta_(3)N_(5)/BiOCl unveils substantially upgraded photocatalytic property under visible light,and the photocatalytic efficiency for removal of tetracycline(TC)and hexavalent chromium(Cr(VI))reaches 89.6%and 91.6%,respectively.The substantial enhancement of the photocatalytic activity is attributed to the synergistic effect of the S-scheme hetero-structure and oxygen vacancies,which improves the visible-light absorption,while promoting the spatial separation of charge carriers with the optimum redox capacity,thereby boosting the production of active species for catalytic reactions.The TC degradation pathway is deduced and the toxicity evolution of TC is appraised using the QSAR method.In a nutshell,this work gives a deep understanding of the photocatalytic mechanism based on Ta_(3)N_(5)/BiOCl as well as presents a newfangled thought for developing highly efficient S-scheme heterojunction photocatalysts for water decontamination.
基金supported by NSF of China (Grant No. 61775241)partly by the Innovation-driven Project (Grant No. 2017CX019)the funding support from the Australian Research Council (ARC Discovery Projects, DP180102976)
文摘With a large number of researches being conducted on two?dimen?sional(2D) materials, their unique properties in optics, electrics, mechanics, and magnetics have attracted increasing attention. Accordingly, the idea of combining distinct functional 2D materials into heterostructures naturally emerged that pro?vides unprecedented platforms for exploring new physics that are not accessible in a single 2D material or 3D heterostructures. Along with the rapid development of controllable, scalable, and programmed synthesis techniques of high?quality 2D heterostructures, various heterostructure devices with extraordinary performance have been designed and fabricated, including tunneling transistors, photodetectors, and spintronic devices. In this review, we present a summary of the latest progresses in fabrications, properties, and applications of di erent types of 2D heterostruc?tures, followed by the discussions on present challenges and perspectives of further investigations.
基金partially supported by the National Natural Science Foundation of China(Grant No.61775241)the Youth Innovation Team(Grant No:2019012)of CSU+3 种基金the Hunan province key research and development project(Grant No:2019GK2233)Hunan Province Graduate Research and Innovation Project(Grant No:CX20190177)the Science and Technology Innovation Basic Research Project of Shenzhen(Grant No.JCYJ20180307151237242)the funding support from the Australian Research Council(ARC Discovery Project,DP180102976).
文摘Spintronics,exploiting the spin degree of electrons as the information vector,is an attractive field for implementing the beyond Complemetary metal-oxide-semiconductor(CMOS)devices.Recently,two-dimensional(2D)materials have been drawing tremendous attention in spintronics owing to their distinctive spin-dependent properties,such as the ultralong spin relaxation time of graphene and the spin-valley locking of transition metal dichalcogenides.Moreover,the related heterostructures provide an unprecedented probability of combining the di erent characteristics via proximity e ect,which could remedy the limitation of individual 2D materials.Hence,the proximity engineering has been growing extremely fast and has made significant achievements in the spin injection and manipulation.Nevertheless,there are still challenges toward practical application;for example,the mechanism of spin relaxation in 2D materials is unclear,and the high-effciency spin gating is not yet achieved.In this review,we focus on 2D materials and related heterostructures to systematically summarize the progress of the spin injection,transport,manipulation,and application for information storage and processing.We also highlight the current challenges and future perspectives on the studies of spintronic devices based on 2D materials.
文摘Three-dimensional crack closure correction methods are investigated in this paper.The fatigue crack growth tests of surface cracks in 14MnNbq steel for bridge plate subjected to tensile and bending loadings are systematically conducted.The experimentally measured fatigue crack growth rates of surface cracks are compared with those of through-thickness cracks in detail.It is found that the crack growth rates of surface cracks are lower than those of through-thickness cracks.In order to correct their differences in fatigue crack growth rates, a dimensionless crack closure correction model is proposed.Although this correction model is determined only by the experimental data of surface cracks under tensile loading with a constant ratio R=0.05, it can correlate the surface crack growth rates with reasonable accuracy under tensile and bending loadings with various stress ratios ranging from 0 to 0.5.Furthermore, predictions of fatigue life and crack aspect ratio for surface cracks are discussed, and the predicted results are also compared with those obtained from other prediction approaches.Comparison results show that the proposed crack closure correction model gives better prediction of fatigue life than other models.
基金This work was partially supported by the National Natural Science Foundation of China(Grant No.61775241)the Hunan Science Fund for Distinguished Young Scholar(2020JJ2059)+3 种基金Youth Innovation Team(Grant No.2019012)of CSU,Hunan province key research and development project(Grant No.2019GK2233,Grant 2020SK2053)Hunan Province Graduate Research and Innovation Project(Grant No.CX20190177)the Science and Technology Innovation Basic Research Project of Shenzhen(Grant No.JCYJ20180307151237242)Also,YPL acknowledges the support by the Project of State Key Laboratory of High-Performance Complex Manufacturing,Central South University(Grant No.ZZYJKT2020-12).Besides,we acknowledge the art work from Servier Medical Art.Y.Z.O and Y.P.L contributed equally to this work.
文摘Fluorescence lifetime imaging microscopy(FLIM)has been rapidly developed over the past 30 years and widely applied in biomedical engineering.Recent progress in fluorophore-dyed probe design has widened the application prospects of fluorescence.Because fluorescence lifetime is sensitive to microenvironments and molecule alterations,FLIM is promising for the detection of pathological conditions.Current cancer-related FLIM applications can be divided into three main categories:(i)FLIM with autofluorescence molecules in or out of a cell,especially with reduced form of nicotinamide adenine dinucleotide,and flavin adenine dinucleotide for cellular metabolism research;(ii)FLIM with Förster resonance energy transfer for monitoring protein interactions;and(iii)FLIM with fluorophore-dyed probes for specific aberration detection.Advancements in nanomaterial production and efficient calculation systems,as well as novel cancer biomarker discoveries,have promoted FLIM optimization,offering more opportunities for medical research and applications to cancer diagnosis and treatment monitoring.This review summarizes cutting-edge researches from 2015 to 2020 on cancer-related FLIM applications and the potential of FLIM for future cancer diagnosis methods and anti-cancer therapy development.We also highlight current challenges and provide perspectives for further investigation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11974066 and 12174041)the Seed Grants from the Wenzhou Institute, University of Chinese Academy of Sciences (Grant No. WIUCASQD2021002)。
文摘Boundary effect and time-reversal symmetry are hot topics in active matter. We present a biology-inspired robotenvironment-interaction active matter system with the field-drive motion and the rules of resource search, resource consumption, and resource recovery. In an environmental compression–expansion cycle, the swarm emerges a series of boundary-dependent phase transitions, and the whole evolution process is time-reversal symmetry-breaking;we call this phenomenon “orderly hysteresis”. We present the influence of the environmental recovery rate on the dynamic collective behavior of the swarm.
文摘The development of distinguished photocatalysts with high photo-carrier disassociation and photo-redox power for efficient elimination of pollutants in water is of great significance but still a grand challenge.Herein,a novel Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) S-scheme heterojunction was built up by integrating Cd0.5Zn0.5S nanoparticles on Bi2WO6 microspheres via a simple route.The S-scheme charge transfer mode substantially boosts the high-energetic electrons/holes spatial detachment and conservation on the Cd_(0.5)Zn_(0.5)S(reduction)and Bi_(2)WO_(6)(oxidation),respectively,as well as effectively suppresses the photo-corrosion of Cd_(0.5)Zn_(0.5)S,rendering Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) photocatalysts with superior redox ability.The optimal Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) heterojunction achieves exceptional visible-light-driven photocatalytic tetracycline degradation and Cr(VI)reduction efficiency,3.2(1.9)-time and 33.6(1.6)-time stronger than that of neat Bi_(2)WO_(6)(Cd_(0.5)Zn_(0.5)S),while retaining the superior stability and reusability.Quenching test,mass spectrometry analysis,and toxicity assessment based on Quantitative Structure Activity Relationships.calculation unravel the prime active substances,intermediates,photo-degradation pathway,and intermediate eco-toxicity in photocatalytic process.This research not only offers a potential photocatalyst for aquatic environment protection but also promotes the exploration of novel and powerful chalcogenides-based S-scheme photocatalysts for environment protection.