With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
The research on high-performance electromagnetic wave absorption materials with high-temperature and oxidative stability in extreme environments is gaining popularity.Herein,the lightweight silicon carbide nanowires(S...The research on high-performance electromagnetic wave absorption materials with high-temperature and oxidative stability in extreme environments is gaining popularity.Herein,the lightweight silicon carbide nanowires(SiC_(nws))/SiC composites are fabricated with in-situ SiC interface on one-dimensional oriented SiC_(nws)skeleton,which collaborative configuration by 3D printing and freeze casting assembly.The con-structed porous structure optimizes the impedance matching degree and scattering intensity,the maximum effective absorption bandwidth(EAB_(max))of 5.9 GHz and the minimum reflection loss(RL_(min))of−41.4 dB can be realized.Considering the inherent oxidation resistance of SiC,the composites present well-maintained absorption performance at 600℃.Even at 1100℃,the EAB_(max)of 4.9 GHz and RLmin of−30.4 dB also demonstrate the high-temperature absorption stability of the composites,indicating exceptional wave absorption properties and thermal stability.The slight attenuation can be attributed to the decrease in impedance matching capability accompanying the elevated dielectric constant.This work clarifies the impact of structure and component synergy on wave absorption behavior,and offers a novel approach to producing high-performance and high-temperature resistance ceramic-based electromagnetic wave absorption materials suitable for extreme environments.展开更多
To mitigate secondary electromagnetic pollution,there is an urgent need to develop absorption-dominant electromagnetic interference(EMI)shielding materials with low density,reduced thickness,lightweight construction,f...To mitigate secondary electromagnetic pollution,there is an urgent need to develop absorption-dominant electromagnetic interference(EMI)shielding materials with low density,reduced thickness,lightweight construction,flexibility,exceptional mechanical strength,and superior electrothermal and photothermal properties,particularly for flexible and wearable electronics.In this regard,we designed an absorption-based composite film comprising carbon nanotubes(CNT)and α-Fe_(2)O_(3),featuring a CNT layer sandwiched between twoα-Fe_(2)O_(3)layers on the upper and lower surfaces.This composite film was fabricated through an electrodeposition process followed by a thermal annealing procedure to achieve enhanced EMI shielding performance along with improved electrothermal and photothermal properties.The strategically designed sandwich structure allows the rough surface of the upper α-Fe_(2)O_(3)layer to not only improve the impedance mismatch between free space and the composite film,facilitating the penetration of incident electromagnetic(EM)waves into the film and promoting increased EM absorption rather than reflection,but also to enhance electrical conductivity,thereby improving electron mobility and density.Consequently,the average total shielding effectiveness(SE)of the CNT/Fe_(16)-300 composite demonstrates remarkable EMI shielding effectiveness(EMI SE:56.8 dB).Furthermore,the alteration in the absorption-to-reflection ratio(A/R)signifies a transition in the EMI shielding mechanism from reflection(0.69 for the pristine CNT film)to absorption(1.86 for the CNT/Fe_(16)-300)with the incremental deposition of α-Fe_(2)O_(3)nanoparticles.This work presents a feasible manufacturing approach for developing composite films with a sandwich structure that exhibits absorption-dominant EMI shielding capabilities,contributing to advancements in thermal management and multifunctional electromagnetic shielding applications.展开更多
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.
基金supported by the National Key R&D Program of China(No.2022YFB3707700)National Natural Science Foundation of China(No.52302121)+3 种基金Shanghai Sailing Program(No.23YF1454700)Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664)Shanghai Science and Technology Innovation Action Plan(No.21511104800).
文摘The research on high-performance electromagnetic wave absorption materials with high-temperature and oxidative stability in extreme environments is gaining popularity.Herein,the lightweight silicon carbide nanowires(SiC_(nws))/SiC composites are fabricated with in-situ SiC interface on one-dimensional oriented SiC_(nws)skeleton,which collaborative configuration by 3D printing and freeze casting assembly.The con-structed porous structure optimizes the impedance matching degree and scattering intensity,the maximum effective absorption bandwidth(EAB_(max))of 5.9 GHz and the minimum reflection loss(RL_(min))of−41.4 dB can be realized.Considering the inherent oxidation resistance of SiC,the composites present well-maintained absorption performance at 600℃.Even at 1100℃,the EAB_(max)of 4.9 GHz and RLmin of−30.4 dB also demonstrate the high-temperature absorption stability of the composites,indicating exceptional wave absorption properties and thermal stability.The slight attenuation can be attributed to the decrease in impedance matching capability accompanying the elevated dielectric constant.This work clarifies the impact of structure and component synergy on wave absorption behavior,and offers a novel approach to producing high-performance and high-temperature resistance ceramic-based electromagnetic wave absorption materials suitable for extreme environments.
基金financially supported by the National Natural Science Foundation of China(Nos.52222202 and 51772310)Chinese Academy of Sciences Key Research Program of Frontier Sciences(No.QYZDY-SSWJSC031)Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(No.JCYJ-SHFY-2021-001).
文摘To mitigate secondary electromagnetic pollution,there is an urgent need to develop absorption-dominant electromagnetic interference(EMI)shielding materials with low density,reduced thickness,lightweight construction,flexibility,exceptional mechanical strength,and superior electrothermal and photothermal properties,particularly for flexible and wearable electronics.In this regard,we designed an absorption-based composite film comprising carbon nanotubes(CNT)and α-Fe_(2)O_(3),featuring a CNT layer sandwiched between twoα-Fe_(2)O_(3)layers on the upper and lower surfaces.This composite film was fabricated through an electrodeposition process followed by a thermal annealing procedure to achieve enhanced EMI shielding performance along with improved electrothermal and photothermal properties.The strategically designed sandwich structure allows the rough surface of the upper α-Fe_(2)O_(3)layer to not only improve the impedance mismatch between free space and the composite film,facilitating the penetration of incident electromagnetic(EM)waves into the film and promoting increased EM absorption rather than reflection,but also to enhance electrical conductivity,thereby improving electron mobility and density.Consequently,the average total shielding effectiveness(SE)of the CNT/Fe_(16)-300 composite demonstrates remarkable EMI shielding effectiveness(EMI SE:56.8 dB).Furthermore,the alteration in the absorption-to-reflection ratio(A/R)signifies a transition in the EMI shielding mechanism from reflection(0.69 for the pristine CNT film)to absorption(1.86 for the CNT/Fe_(16)-300)with the incremental deposition of α-Fe_(2)O_(3)nanoparticles.This work presents a feasible manufacturing approach for developing composite films with a sandwich structure that exhibits absorption-dominant EMI shielding capabilities,contributing to advancements in thermal management and multifunctional electromagnetic shielding applications.