高保真材料模型的系统性构建、优化和验证对于动态载荷仿真至关重要。详述了在大禹数字平台上构建和验证此类模型的方法:首先,构建参数化状态方程(equation of state,EOS)框架,整合所有可用的含相关不确定度的实验数据,并采用全局优化...高保真材料模型的系统性构建、优化和验证对于动态载荷仿真至关重要。详述了在大禹数字平台上构建和验证此类模型的方法:首先,构建参数化状态方程(equation of state,EOS)框架,整合所有可用的含相关不确定度的实验数据,并采用全局优化方法确定最优EOS参数;然后,将优化后的EOS与包含待定参数的本构模型耦合,开展复现实验条件的一维或二维数值模拟;进而,利用优化算法迭代调整本构模型参数,以实现模拟波形与实验波形的全局最优匹配,从而精确标定本构参数;最后,整合优化后的EOS与标定后的本构模型,形成完整的材料模型,并为自研及商业仿真软件开发标准化接口。通过模拟预测新的实验条件下的材料性质并与实验结果进行对比,完成材料模型的验证。利用自主研发的新型重要性交叉优化算法,实现了实验数据约束下的理论模型参数优化,采用贝叶斯不确定性量化程序对材料模型参数的不确定性及其向计算物理量的传递进行严格量化。展开更多
Computing resources are one of the key factors restricting the extraction of marine targets by using deep learning.In order to increase computing speed and shorten the computing time,parallel distributed architecture ...Computing resources are one of the key factors restricting the extraction of marine targets by using deep learning.In order to increase computing speed and shorten the computing time,parallel distributed architecture is adopted to extract marine targets.The advantages of two distributed architectures,Parameter Server and Ring-allreduce architecture,are combined to design a parallel distributed architecture suitable for deep learning–Optimal Interleaved Distributed Architecture(OIDA).Three marine target extraction methods including OTD_StErf,OTD_Loglogistic and OTD_Sgmloglog are used to test OIDA,and a total of 18 experiments in 3categories are carried out.The results show that OIDA architecture can meet the timeliness requirements of marine target extraction.The average speed of target parallel extraction with single-machine 8-core CPU is 5.75 times faster than that of single-machine single-core CPU,and the average speed with 5-machine 40-core CPU is 20.75 times faster.展开更多
The Qilian orogenic belt,as an important component of the central orogenic system,can be divided into three tectonic units from north to south:the North Qilian tectonic belt,the Central Qilian tectonic belt and the So...The Qilian orogenic belt,as an important component of the central orogenic system,can be divided into three tectonic units from north to south:the North Qilian tectonic belt,the Central Qilian tectonic belt and the South Qilian tectonic belt.The Lajishan ophiolitic mélange zone is an important part of the South Qilian tectonic belt.The study of the formation age and tectonic attributes of the different rock units in the Lajishan is of great significance for reconstructing the tectonic evolution of the south Qilian tectonics belt and the Proto-Tethys Ocean.The Ayishan formation is an important unit of the Lajishan mélange belt,but its stratigraphic age and formation environment are still not constrained,which limits the reconstruction of the early Palaeozoic tectonic evolution of the South Qilian tectonic belt and the closure time of the Proto-Tethys Ocean.In recent years,a set of rock assemblages consisting of andesite,rhyolite,sandstone and pebbly sandstone have been identified in the Ayishan formation exposed in the Lajishan through detailed geological mapping in the field.They are in fault contact with the underlying ophiolite mélange.Regionally,a volcano-sedimentary succession consisting of andesite,rhyolite,volcanic breccia,and volcaniclastic sandstone nonconformably overlies the Cambrian arc-accretionarycomplex system in the Ayishan area.These rocks were originally assigned to the Ayishan formation and attributed an Early Ordovician age(BGMRQP,1964,1991).Our rhyolite samples from the Ayishan formation yielded a weighted mean 206Pb/238U age of 447 Ma using zircon U-Pb dating,which can be interpreted as the eruption age of the volcanic rocks.These volcanic rock assemblages are distributed in sandstone,pebbled sandstone and conglomerate in the form of interlayers.Therefore,the zircon UPb age of the volcanic rocks can constrain the age of Ayishan formation that it should belong to the late Ordovician rather than early Ordovician.Additionally,we propose that the Ayishan rhyolites were formed in collision-related tectonic setting based on the geochemistry of the rhyolites,which means the initial continental collision between the Central Qilian block and the Qaidam block occurred at least in the Late Ordovician.Ayishan formation are in fault contact with the Cambrian Donggoumeikuang complex in the south.The Donggoumeikuang complex represents a Cambrian introceanic subduction system that formed in response to subduction of the Proto-Tethyan Ocean(Yan et al.,2015;Fu et al.,2018).At 450 to 420 Ma,the Proto-Tethyan Ocean closed and the Qaidam block collided against the central Qilian tectonics belt.Voluminous 450–440 Ma I-type and S-type granites(Yan et al.,2015;Tung et al.,2016)that straddle the Central and South Qilian belts formed a broad Andean-type continental margin(Yan et al.,2019),which indicates that the transition from oceanic subduction to continental subduction occurred in 450–440 Ma.At 440–420 Ma,the syncollisional and postcollisional granitoids extensively developed,accompanied by high-pressure granulite-facies metamorphism and anatexis in the South Qilian belt and the Qaidam block(Yu et al.,2014;Yan et al.,2015;Fu et al.,2018;Li et al.,2018).展开更多
文摘高保真材料模型的系统性构建、优化和验证对于动态载荷仿真至关重要。详述了在大禹数字平台上构建和验证此类模型的方法:首先,构建参数化状态方程(equation of state,EOS)框架,整合所有可用的含相关不确定度的实验数据,并采用全局优化方法确定最优EOS参数;然后,将优化后的EOS与包含待定参数的本构模型耦合,开展复现实验条件的一维或二维数值模拟;进而,利用优化算法迭代调整本构模型参数,以实现模拟波形与实验波形的全局最优匹配,从而精确标定本构参数;最后,整合优化后的EOS与标定后的本构模型,形成完整的材料模型,并为自研及商业仿真软件开发标准化接口。通过模拟预测新的实验条件下的材料性质并与实验结果进行对比,完成材料模型的验证。利用自主研发的新型重要性交叉优化算法,实现了实验数据约束下的理论模型参数优化,采用贝叶斯不确定性量化程序对材料模型参数的不确定性及其向计算物理量的传递进行严格量化。
基金the Natural Science Foundation of Shandong Province(No.ZR2019MD034)the Education Reform Project of Shandong Province(No.M2020266)。
文摘Computing resources are one of the key factors restricting the extraction of marine targets by using deep learning.In order to increase computing speed and shorten the computing time,parallel distributed architecture is adopted to extract marine targets.The advantages of two distributed architectures,Parameter Server and Ring-allreduce architecture,are combined to design a parallel distributed architecture suitable for deep learning–Optimal Interleaved Distributed Architecture(OIDA).Three marine target extraction methods including OTD_StErf,OTD_Loglogistic and OTD_Sgmloglog are used to test OIDA,and a total of 18 experiments in 3categories are carried out.The results show that OIDA architecture can meet the timeliness requirements of marine target extraction.The average speed of target parallel extraction with single-machine 8-core CPU is 5.75 times faster than that of single-machine single-core CPU,and the average speed with 5-machine 40-core CPU is 20.75 times faster.
基金granted by the National Natural Science Foundation of China(Grant Nos.41272221,41772228,41702239)the Geological Survey Program of China(Grant Nos.1212011120159,DD20160201-04)
文摘The Qilian orogenic belt,as an important component of the central orogenic system,can be divided into three tectonic units from north to south:the North Qilian tectonic belt,the Central Qilian tectonic belt and the South Qilian tectonic belt.The Lajishan ophiolitic mélange zone is an important part of the South Qilian tectonic belt.The study of the formation age and tectonic attributes of the different rock units in the Lajishan is of great significance for reconstructing the tectonic evolution of the south Qilian tectonics belt and the Proto-Tethys Ocean.The Ayishan formation is an important unit of the Lajishan mélange belt,but its stratigraphic age and formation environment are still not constrained,which limits the reconstruction of the early Palaeozoic tectonic evolution of the South Qilian tectonic belt and the closure time of the Proto-Tethys Ocean.In recent years,a set of rock assemblages consisting of andesite,rhyolite,sandstone and pebbly sandstone have been identified in the Ayishan formation exposed in the Lajishan through detailed geological mapping in the field.They are in fault contact with the underlying ophiolite mélange.Regionally,a volcano-sedimentary succession consisting of andesite,rhyolite,volcanic breccia,and volcaniclastic sandstone nonconformably overlies the Cambrian arc-accretionarycomplex system in the Ayishan area.These rocks were originally assigned to the Ayishan formation and attributed an Early Ordovician age(BGMRQP,1964,1991).Our rhyolite samples from the Ayishan formation yielded a weighted mean 206Pb/238U age of 447 Ma using zircon U-Pb dating,which can be interpreted as the eruption age of the volcanic rocks.These volcanic rock assemblages are distributed in sandstone,pebbled sandstone and conglomerate in the form of interlayers.Therefore,the zircon UPb age of the volcanic rocks can constrain the age of Ayishan formation that it should belong to the late Ordovician rather than early Ordovician.Additionally,we propose that the Ayishan rhyolites were formed in collision-related tectonic setting based on the geochemistry of the rhyolites,which means the initial continental collision between the Central Qilian block and the Qaidam block occurred at least in the Late Ordovician.Ayishan formation are in fault contact with the Cambrian Donggoumeikuang complex in the south.The Donggoumeikuang complex represents a Cambrian introceanic subduction system that formed in response to subduction of the Proto-Tethyan Ocean(Yan et al.,2015;Fu et al.,2018).At 450 to 420 Ma,the Proto-Tethyan Ocean closed and the Qaidam block collided against the central Qilian tectonics belt.Voluminous 450–440 Ma I-type and S-type granites(Yan et al.,2015;Tung et al.,2016)that straddle the Central and South Qilian belts formed a broad Andean-type continental margin(Yan et al.,2019),which indicates that the transition from oceanic subduction to continental subduction occurred in 450–440 Ma.At 440–420 Ma,the syncollisional and postcollisional granitoids extensively developed,accompanied by high-pressure granulite-facies metamorphism and anatexis in the South Qilian belt and the Qaidam block(Yu et al.,2014;Yan et al.,2015;Fu et al.,2018;Li et al.,2018).