This article describes the effective channel length degradation under hot carrier stressing. The extraction is based on the IDs-Vcs characteristics by maximum transconductance (maximum slope of IDs & VGS) in the li...This article describes the effective channel length degradation under hot carrier stressing. The extraction is based on the IDs-Vcs characteristics by maximum transconductance (maximum slope of IDs & VGS) in the linear region. The transconductance characteristics are determine for the several devices of difference drawn channel length. The effective channel length of submicron LDD (Lightly Doped Drain) NMOSFETs (Metal Oxide Semiconductor Field Effect Transistor) under hot carrier stressing was measured at the stress time varying from zero to 10,000 seconds. It is shown that the effective channel length was increased with time. This is caused by charges trapping in the oxide during stress. The increased of effective channel length (△Leff) is seem to be increased sharply as the gate channel length is decrease.展开更多
Abstract: Lead-free piezoelectric ceramics of (1 - x) Bi0.5K0.5TiO3-BaTiO3 (BKT-BT) were fabricated by the solid state reaction method with normal sintering. The influence of BT addition on the crystal structure,...Abstract: Lead-free piezoelectric ceramics of (1 - x) Bi0.5K0.5TiO3-BaTiO3 (BKT-BT) were fabricated by the solid state reaction method with normal sintering. The influence of BT addition on the crystal structure, phase transition and dielectric properties was investigated. The crystal structure and ferroelectric phase transition were studied by XRD (X-ray diffraction) and dielectric measurements. The complete solid solution of BKT-BT was observed for all compositions. In XRD results, all compositions showed a single phase perovskite structure with tetragonal symmetry at room temperature. With increasing BT content, the separation between diffraction peaks corresponded to increasing tetragonality. The phase transition temperature of ferroelectric tetragonal-paraelectric cubic (Tc) decreased with increasing BT content. As the amount of BT concentration increased, the ceramic became denser, and almost no porosity was finally obtained.展开更多
The tribovoltaic nanogenerator(TVNG)has evolved in recent years as a novel type of nanogenerator designed to address the limitations of the standard triboelectric nanogenerator in terms of output signal and charge gen...The tribovoltaic nanogenerator(TVNG)has evolved in recent years as a novel type of nanogenerator designed to address the limitations of the standard triboelectric nanogenerator in terms of output signal and charge generation.Besides the outstanding characteristics,the tribovoltaic effect can also well be coupled with another effect to further boost the output performance.In this work,we proposed firstly a frictional heat-assisted performance enhancement in dynamic Schottky contact from the rubbing between n-type silver selenide(Ag_(2)Se)and aluminum.The chemical composition and physical characteristics of the Ag_(2)Se ceramic were analyzed using X-ray diffraction,scanning electron microscopy,and Synchrotron X-ray tomography techniques.UVeVis spectroscopy and UPS were also utilized in order to validate the semiconducting property of the n-type Ag_(2)Se ceramic.Moreover,the presence of the Schottky junction was demonstrated through the analysis of the current-bias voltage characteristic curve of the Ag_(2)Se/aluminum(Al)contact under varying stress and temperature conditions.The built-in electric field plays a crucial part in the tribovoltaic effect by efficiently transferring the excited carriers to an external load through sliding contact between Ag_(2)Se and Al.Demonstrating the synergy between tribovoltaic and thermoelectric effects becomes achievable through the excellent thermoelectric property of Ag_(2)Se.Herein,the proposed TVNG generated a peak output voltage and current of around 0.7 V and 24.8 nA,respectively,achieving a maximum output power of 12.6 nW at a load resistance of 10 kU.The influence of frictional heat on the output performance of the proposed TVNG was well demonstrated by the thermal-induced voltage and enhanced electrical output from continuous sliding.The concepts given in this study establish the basis for the progress of effective energy collection employing semiconducting materials and the advancement of flexible harvesting and sensing device development in the future.展开更多
文摘This article describes the effective channel length degradation under hot carrier stressing. The extraction is based on the IDs-Vcs characteristics by maximum transconductance (maximum slope of IDs & VGS) in the linear region. The transconductance characteristics are determine for the several devices of difference drawn channel length. The effective channel length of submicron LDD (Lightly Doped Drain) NMOSFETs (Metal Oxide Semiconductor Field Effect Transistor) under hot carrier stressing was measured at the stress time varying from zero to 10,000 seconds. It is shown that the effective channel length was increased with time. This is caused by charges trapping in the oxide during stress. The increased of effective channel length (△Leff) is seem to be increased sharply as the gate channel length is decrease.
文摘Abstract: Lead-free piezoelectric ceramics of (1 - x) Bi0.5K0.5TiO3-BaTiO3 (BKT-BT) were fabricated by the solid state reaction method with normal sintering. The influence of BT addition on the crystal structure, phase transition and dielectric properties was investigated. The crystal structure and ferroelectric phase transition were studied by XRD (X-ray diffraction) and dielectric measurements. The complete solid solution of BKT-BT was observed for all compositions. In XRD results, all compositions showed a single phase perovskite structure with tetragonal symmetry at room temperature. With increasing BT content, the separation between diffraction peaks corresponded to increasing tetragonality. The phase transition temperature of ferroelectric tetragonal-paraelectric cubic (Tc) decreased with increasing BT content. As the amount of BT concentration increased, the ceramic became denser, and almost no porosity was finally obtained.
基金funded by King Mongkut’s University of Technology North Bangkok,Contract no.KMUTNB-67-KNOW-02by National Science,Research and Innovation Fund(NSRF)+1 种基金King Mongkut’s University of Technology North Bangkok(Project no.KMUTNBeFFe67-B-35)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)(2021R1C1C1011588).
文摘The tribovoltaic nanogenerator(TVNG)has evolved in recent years as a novel type of nanogenerator designed to address the limitations of the standard triboelectric nanogenerator in terms of output signal and charge generation.Besides the outstanding characteristics,the tribovoltaic effect can also well be coupled with another effect to further boost the output performance.In this work,we proposed firstly a frictional heat-assisted performance enhancement in dynamic Schottky contact from the rubbing between n-type silver selenide(Ag_(2)Se)and aluminum.The chemical composition and physical characteristics of the Ag_(2)Se ceramic were analyzed using X-ray diffraction,scanning electron microscopy,and Synchrotron X-ray tomography techniques.UVeVis spectroscopy and UPS were also utilized in order to validate the semiconducting property of the n-type Ag_(2)Se ceramic.Moreover,the presence of the Schottky junction was demonstrated through the analysis of the current-bias voltage characteristic curve of the Ag_(2)Se/aluminum(Al)contact under varying stress and temperature conditions.The built-in electric field plays a crucial part in the tribovoltaic effect by efficiently transferring the excited carriers to an external load through sliding contact between Ag_(2)Se and Al.Demonstrating the synergy between tribovoltaic and thermoelectric effects becomes achievable through the excellent thermoelectric property of Ag_(2)Se.Herein,the proposed TVNG generated a peak output voltage and current of around 0.7 V and 24.8 nA,respectively,achieving a maximum output power of 12.6 nW at a load resistance of 10 kU.The influence of frictional heat on the output performance of the proposed TVNG was well demonstrated by the thermal-induced voltage and enhanced electrical output from continuous sliding.The concepts given in this study establish the basis for the progress of effective energy collection employing semiconducting materials and the advancement of flexible harvesting and sensing device development in the future.