Implementing acoustic emission experiments with large rock samples, LURR (Load/Unload Response Ratio) theory was studied. The loading conditions in the experiments were designed to simulate the complicated loading pro...Implementing acoustic emission experiments with large rock samples, LURR (Load/Unload Response Ratio) theory was studied. The loading conditions in the experiments were designed to simulate the complicated loading process of underground rocks. The damages emerging inside the rock samples were recorded by the acoustic emission technique during the loading process. The experimental results were consistent with prediction by LURR theory. Integrating the changing processes of LURR value Y and the location process of acoustic emission events showed agreement between the variation of LURR value Y and the damage evolution inside the rocks. Furthermore, the high value of Y emerged before the complete breakdown of materials. Therefore, the damage evolution of rock specimen can be quantitatively analyzed with LURR theory, thus the failure of the rock materials and the earthquake occurrence may be predicted. The experimental results gave a further verification of LURR theory.展开更多
Abstract: The Raman scattering spectra of n- type GaP(doped S) single crystal and red and green luminous materials grown on the n - type GaP (doped S) single crys-tal substrate by liquid - phase epitaxy are analyed. T...Abstract: The Raman scattering spectra of n- type GaP(doped S) single crystal and red and green luminous materials grown on the n - type GaP (doped S) single crys-tal substrate by liquid - phase epitaxy are analyed. The results show that the spectra of GaP single crystal and its luminous materials include not only the first - order longitudi-nal optical photons and transverse optical phonons Raman scattering peaks, but also the peaks of the bound excitons, bound electrons and bound holes.展开更多
Defects in S doped GaP single crystal which is prepared by LEC method were observed using SEM and positron lifetime,and its change with thermal treatment temperature was measured using positron annihilation spectromet...Defects in S doped GaP single crystal which is prepared by LEC method were observed using SEM and positron lifetime,and its change with thermal treatment temperature was measured using positron annihilation spectrometer.The relationship between positron lifetime and the combination state of defects was discussed.展开更多
Bio-memristor can address the inherent limitations of conventional memory components in artificial perceptual systems due to their biocompatibility with biological tissue.The actual deployment of bio-memristor is rest...Bio-memristor can address the inherent limitations of conventional memory components in artificial perceptual systems due to their biocompatibility with biological tissue.The actual deployment of bio-memristor is restricted by the lack of reproducibility,high power consumption,and insufficient storage capacity.Here,a reproducible and low-power multistate biomemristor is developed by designing the chitosan(CS)-reduced graphene oxide(rGO)interpenetrating network electrolyte.The interpenetrating network structure of the CS-rGO electrolyte reinforces structural stability and improves ionic conductivity.The bio-memristor equipped with CS-rGO active layer shows stable bipolar resistive switching up to 100 consecutive cycles,reproducible multistate storage with six different memory states,and low programming power of 9.4μW.The fabricated biocompatible CS-rGO device also exhibits deformation stability of memory operation over 103 bending cycles,high biocompatibility with HEK293 cells,and skin adhesion.This work provides an enlightening design strategy to develop highperformance bio-memristors for applications in artificial perceptual systems.展开更多
文摘Implementing acoustic emission experiments with large rock samples, LURR (Load/Unload Response Ratio) theory was studied. The loading conditions in the experiments were designed to simulate the complicated loading process of underground rocks. The damages emerging inside the rock samples were recorded by the acoustic emission technique during the loading process. The experimental results were consistent with prediction by LURR theory. Integrating the changing processes of LURR value Y and the location process of acoustic emission events showed agreement between the variation of LURR value Y and the damage evolution inside the rocks. Furthermore, the high value of Y emerged before the complete breakdown of materials. Therefore, the damage evolution of rock specimen can be quantitatively analyzed with LURR theory, thus the failure of the rock materials and the earthquake occurrence may be predicted. The experimental results gave a further verification of LURR theory.
文摘Abstract: The Raman scattering spectra of n- type GaP(doped S) single crystal and red and green luminous materials grown on the n - type GaP (doped S) single crys-tal substrate by liquid - phase epitaxy are analyed. The results show that the spectra of GaP single crystal and its luminous materials include not only the first - order longitudi-nal optical photons and transverse optical phonons Raman scattering peaks, but also the peaks of the bound excitons, bound electrons and bound holes.
文摘Defects in S doped GaP single crystal which is prepared by LEC method were observed using SEM and positron lifetime,and its change with thermal treatment temperature was measured using positron annihilation spectrometer.The relationship between positron lifetime and the combination state of defects was discussed.
基金the National Key Research and Development Program of China,Grant/Award Number:2018YFA0703500National Natural Science Foundation of China,Grant/Award Numbers:51991340,51991342,52072029,52102153,52188101+2 种基金the Overseas Expertise Introduction Projects for Discipline Innovation,Grant/Award Number:B14003the China Postdoctoral Science Foundation,Grant/Award Number:2021M700379the Fundamental Research Funds for Central Universities,Grant/Award Number:FRFTP-18-001C1。
文摘Bio-memristor can address the inherent limitations of conventional memory components in artificial perceptual systems due to their biocompatibility with biological tissue.The actual deployment of bio-memristor is restricted by the lack of reproducibility,high power consumption,and insufficient storage capacity.Here,a reproducible and low-power multistate biomemristor is developed by designing the chitosan(CS)-reduced graphene oxide(rGO)interpenetrating network electrolyte.The interpenetrating network structure of the CS-rGO electrolyte reinforces structural stability and improves ionic conductivity.The bio-memristor equipped with CS-rGO active layer shows stable bipolar resistive switching up to 100 consecutive cycles,reproducible multistate storage with six different memory states,and low programming power of 9.4μW.The fabricated biocompatible CS-rGO device also exhibits deformation stability of memory operation over 103 bending cycles,high biocompatibility with HEK293 cells,and skin adhesion.This work provides an enlightening design strategy to develop highperformance bio-memristors for applications in artificial perceptual systems.