Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a deta...Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a detailed exploration of the repair mechanism.However,they still suffer from unclear repair mechanisms and physicochemical evolution.In this study,spent graphite was repaired employing three methodologies:pickling-sintering,pyrogenic-recovery,and high-temperature sintering.Owing to the catalytic effect of the metal-based impurities and temperature control,the as-obtained samples displayed an ordered transformation,including the interlayer distance,crystalline degree,and grain size.As anodes of lithium ions batteries,the capacity of repaired samples reached up to 310 mA h g^(-1)above after 300loops at 1.0 C,similar to that of commercial graphite.Meanwhile,benefitting from the effective assembly of carbon atoms in internal structure of graphite at>1400℃,their initial coulombic efficiency were>87%.Even at 2.0 C,the capacity of samples remained approximately 244 mA h g^(-1)after 500 cycles.Detailed electrochemical and kinetic analyses revealed that a low temperature enhanced the isotropy,thereby enhancing the rate properties.Further,economic and environmental analyses revealed that the revenue obtained through suitable pyrogenic-recovering manners was approximately the largest value(5500$t^(-1)).Thus,this study is expected to clarify the in-depth effect of different repair methods on the traits of graphite,while offering all-round evaluations of repaired graphite.展开更多
Captured by the environmental and economic value,the recycling of spent lithium iron phosphate(LFP)batteries has attracted numerous attentions.However,hydrometallurgical method still suffers from complex process,and h...Captured by the environmental and economic value,the recycling of spent lithium iron phosphate(LFP)batteries has attracted numerous attentions.However,hydrometallurgical method still suffers from complex process,and hydrothermal method is limited by morphology control,ascribed to the strong polarity of water.Herein,supported by ethanol as crystal surface modifier,the regular(010)orientation and short b-axis are effectively tailored for regenerated LFP.As Li-storage cathode,the capacities of as-optimized LFP could reach up to 157.07 mA h g^(-1)at 1 C,and the stable capacity of 150.50 mA h g^(-1)could be remained with retention of 93.48%after 400 cycles at 1 C.Even at 10 C,their capacity could be still kept about 119.3 m A h g^(-1).Assisted by the detail analysis of adsorption energy,the clear growth mechanism is proposed,the lowest adsorbing energy(-4.66 eV)of ethanol on(010)crystal plane renders the ordered growth along(010)crystal plane.Given this,the work is expected to shed light on the tailoring mechanism of internal plane about regenerated materials,whilst providing effective strategies for highperformance regenerated LFP.展开更多
In the field of computer and machine vision, haze and fog lead to image degradation through various degradation mechanisms including but not limited to contrast attenuation, blurring and pixel distortions. This limits...In the field of computer and machine vision, haze and fog lead to image degradation through various degradation mechanisms including but not limited to contrast attenuation, blurring and pixel distortions. This limits the efficiency of machine vision systems such as video surveillance, target tracking and recognition. Various single image dark channel dehazing algorithms have aimed to tackle the problem of image hazing in a fast and efficient manner. Such algorithms rely upon the dark channel prior theory towards the estimation of the atmospheric light which offers itself as a crucial parameter towards dehazing. This paper studies the state-of-the-art in this area and puts forwards their strengths and weaknesses. Through experiments the efficiencies and shortcomings of these algorithms are shared. This information is essential for researchers and developers in providing a reference for the development of applications and future of the research field.展开更多
Epidemiological evidence suggests that there is a direct relationship between the degree of obesity and acute pancreatitis severity.Intake of different fatty acids leads to different types of hyperlipidemias.Adipose d...Epidemiological evidence suggests that there is a direct relationship between the degree of obesity and acute pancreatitis severity.Intake of different fatty acids leads to different types of hyperlipidemias.Adipose degradation by pancreatic lipase generates different free fatty acids,which can exacerbate pancreatitis.Saturated fatty acids(SFAs)play an inflammatory role in human metabolic syndrome and obesity,whereas unsaturated fatty acids(UFAs)are“good fats”that are thought to enhance overall health status.However,it appears that serum UFAs correlate with severe acute pancreatitis.Additionally,the“obesity paradox”suggests that UFAs potentially minimize direct harm to the organ.This review provides an in-depth overview of the role of SFAs and UFAs in acute pancreatitis of hyperlipidemia and discusses potential prevention targets for severe acute pancreatitis.展开更多
Given the breakthroughs in key technologies,such as image recognition,deep learning and neural networks,artificial intelligence(AI)continues to be increasingly developed,leading to closer and deeper integration with a...Given the breakthroughs in key technologies,such as image recognition,deep learning and neural networks,artificial intelligence(AI)continues to be increasingly developed,leading to closer and deeper integration with an increasingly data-,knowledge-and brain labor-intensive medical industry.As society continues to advance and individuals become more aware of their health needs,the problems associated with the aging of the population are receiving increasing attention,and there is an urgent demand for improving medical technology,prolonging human life and enhancing health.Digestive system diseases are the most common clinical diseases and are characterized by complex clinical manifestations and a general lack of obvious symptoms in the early stage.Such diseases are very difficult to diagnose and treat.In recent years,the incidence of diseases of the digestive system has increased.As AI applications in the field of health care continue to be developed,AI has begun playing an important role in the diagnosis and treatment of diseases of the digestive system.In this paper,the application of AI in assisted diagnosis and the application and prospects of AI in malignant and benign digestive system diseases are reviewed.展开更多
Despite the intriguing merits of lithium-sulfur(Li-S) systems, they still suffer from the notorious‘‘shuttling-effect" of polysulfides. Herein, carbon materials with rational tailoring of morphology and pores w...Despite the intriguing merits of lithium-sulfur(Li-S) systems, they still suffer from the notorious‘‘shuttling-effect" of polysulfides. Herein, carbon materials with rational tailoring of morphology and pores were designed for strong loading/adsorption with the controlling of energy-storage ability.Through rational tailoring, it is strongly verified that such engineering of evolutions result in variational of sulfur immobilization in the obtained carbon. As expected, the targeted sample delivers a stable capacity of 925 m Ah g^(-1) after 100 loops. Supporting by the "cutting-off" manners, it is disclosed that mesopores in carbon possess more fascinated traits than micro/macropores in improving the utilization of sulfur and restraining Li_(2)S_x(4≤x≤8). Moreover, the long-chain polysulfide could be further consolidated by auto-doping oxygen groups. Supported by in-depth kinetic analysis, it is confirmed that the kinetics of ion/e-transfer during charging and discharging could be accelerated by mesopores, especially in stages of the formation of solid S_(8) and Li_(2)S, further improving the capacity of ion-storage in Li-S battery. Given this, the elaborate study provide significant insights into the effect of pore structure on kinetic performance about Li-storage behaviors in Li-S battery, and give guidance for improving sulfur immobilization.展开更多
Objective: Our aim was to investigate clinical and laboratory characteristics of osteoarthritic patients who had amyloid deposition in their knee joints. Methods: Synovial membranes were obtained from 36 patients wi...Objective: Our aim was to investigate clinical and laboratory characteristics of osteoarthritic patients who had amyloid deposition in their knee joints. Methods: Synovial membranes were obtained from 36 patients with knee osteoarthritis (OA) who underwent joint replacement surgery. From this sample, the diagnosis of amyloid was deter- mined by Congo red staining, which demonstrated apple-green birefringence under a polarized microscope. All syn- ovial membranes were immunohistochemically characterized for the expressions of amyloid immunoglobulin light chain (AL-K and AL-,k), serum amyloid-A (SAA), amyloidogenic transthyretin (ATTR), and amyloidogenic 152- microglobulin (A152M). Matrix-assisted laser desorption-ionizaton/time of flight mass spectrometry (MALDI-TOF MS) was used to analyze transthyretin (TTR) isoforms in the serum of each patient. Results: Nine cases (25%) were found to be amyloid-positive. Immunohistochemicaliy, eight cases (88.9%) had ATTR deposition, and one sample (11.1%) was shown to be AL-K-positive. MALDI-TOF MS identified that the TTR in the serum of the patients was unmodified wild-type TTR, TTR-Cys-S-S-Cys, and TTR-Cys-S-S-CysGly. The age at surgery and the disease duration were sig- nificantly higher in the ATTR-positive group than in the ATTR-negative group. Knee score and function score were significantly lower in the ATTR-positive group than in the ATTR-negative group. Conclusions: Amyloid deposition in synovial membranes of OA patients was found to be ATTR and AL-K. TTR in the serum of the patients was unmodified wild-type TTR together with two isoforms. The high age at surgery, long disease duration, and a deteriorated knee function were associated with ATTR amyloid deposition in the osteoarthritic knee joints.展开更多
Tumor immunotherapy has emerged as a promising method in cancer treatment,but patient responses vary,necessitating personalized strategies and prognostic biomarkers.This study aimed to identify prognostic factors and ...Tumor immunotherapy has emerged as a promising method in cancer treatment,but patient responses vary,necessitating personalized strategies and prognostic biomarkers.This study aimed to identify prognostic factors and construct a predictive model for patient survival outcomes and immunotherapy response.We curated six immunotherapy datasets representing diverse cancer types and treatment regimens.After data preprocessing,patients were stratified based on immunotherapy response.Differential gene expression analysis identified 22 genes consistently dysregulated across multiple datasets.Functional analysis provided critical insights,highlighting the enrichment of these dysregulated genes in immune response pathways and tumor microenvironment-related processes.To create a robust prognostic model,we meticulously employed a multistep approach.Initially,the identified 22 genes underwent rigorous univariate Cox regression analysis to evaluate their individual associations with patient survival outcomes.Genes showing statistical significance(p-values<0.05)at this stage advanced to the subsequent multivariate Cox regression analysis,which aimed to address potential confounding factors and collinearity among genes.From this analysis,we ultimately identified four key genes—ST6GALNAC2,SNORA65,MFAP2,and CDKN2B—that were significantly associated with patient survival outcomes.Incorporating these four key genes along with their corresponding coefficients,we constructed a predictive model.This model’s efficacy was validated through extensive Cox regression analyses,demonstrating its robustness in predicting patient survival outcomes.Furthermore,our model exhibited promising predictive capability for immunotherapy response,providing a potential tool for anticipating treatment efficacy.These findings provide insights into immunotherapy response mechanisms and suggest potential prognostic biomarkers for personalized treatment.Our study contributes to advancing cancer immunotherapy and personalized medicine.展开更多
基金financially supported by National Natural Science Foundation of China(52374288,52204298)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2022QNRC001)+2 种基金National Key Research and Development Program of China(2022YFC3900805-4/7)Hunan Provincial Education Office Foundation of China(No.21B0147)Collaborative Innovation Centre for Clean and Efficient Utilization of Strategic Metal Mineral Resources,Found of State Key Laboratory of Mineral Processing(BGRIMM-KJSKL-2017-13)。
文摘Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a detailed exploration of the repair mechanism.However,they still suffer from unclear repair mechanisms and physicochemical evolution.In this study,spent graphite was repaired employing three methodologies:pickling-sintering,pyrogenic-recovery,and high-temperature sintering.Owing to the catalytic effect of the metal-based impurities and temperature control,the as-obtained samples displayed an ordered transformation,including the interlayer distance,crystalline degree,and grain size.As anodes of lithium ions batteries,the capacity of repaired samples reached up to 310 mA h g^(-1)above after 300loops at 1.0 C,similar to that of commercial graphite.Meanwhile,benefitting from the effective assembly of carbon atoms in internal structure of graphite at>1400℃,their initial coulombic efficiency were>87%.Even at 2.0 C,the capacity of samples remained approximately 244 mA h g^(-1)after 500 cycles.Detailed electrochemical and kinetic analyses revealed that a low temperature enhanced the isotropy,thereby enhancing the rate properties.Further,economic and environmental analyses revealed that the revenue obtained through suitable pyrogenic-recovering manners was approximately the largest value(5500$t^(-1)).Thus,this study is expected to clarify the in-depth effect of different repair methods on the traits of graphite,while offering all-round evaluations of repaired graphite.
基金supported by the National Natural Science Foundation of China(52374290,52374288 and 52204298)the Innovation-driven Program of Central South University(2023CXQD009)+3 种基金the Hunan Provincial Innovation Foundation for Postgraduate(2024ZZTS0059)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2022QNRC001)the National Key Research and Development Program of China(2022YFC3900805-4/7)the Hunan Provincial Education Office Foundation of China(21B0147)。
文摘Captured by the environmental and economic value,the recycling of spent lithium iron phosphate(LFP)batteries has attracted numerous attentions.However,hydrometallurgical method still suffers from complex process,and hydrothermal method is limited by morphology control,ascribed to the strong polarity of water.Herein,supported by ethanol as crystal surface modifier,the regular(010)orientation and short b-axis are effectively tailored for regenerated LFP.As Li-storage cathode,the capacities of as-optimized LFP could reach up to 157.07 mA h g^(-1)at 1 C,and the stable capacity of 150.50 mA h g^(-1)could be remained with retention of 93.48%after 400 cycles at 1 C.Even at 10 C,their capacity could be still kept about 119.3 m A h g^(-1).Assisted by the detail analysis of adsorption energy,the clear growth mechanism is proposed,the lowest adsorbing energy(-4.66 eV)of ethanol on(010)crystal plane renders the ordered growth along(010)crystal plane.Given this,the work is expected to shed light on the tailoring mechanism of internal plane about regenerated materials,whilst providing effective strategies for highperformance regenerated LFP.
文摘In the field of computer and machine vision, haze and fog lead to image degradation through various degradation mechanisms including but not limited to contrast attenuation, blurring and pixel distortions. This limits the efficiency of machine vision systems such as video surveillance, target tracking and recognition. Various single image dark channel dehazing algorithms have aimed to tackle the problem of image hazing in a fast and efficient manner. Such algorithms rely upon the dark channel prior theory towards the estimation of the atmospheric light which offers itself as a crucial parameter towards dehazing. This paper studies the state-of-the-art in this area and puts forwards their strengths and weaknesses. Through experiments the efficiencies and shortcomings of these algorithms are shared. This information is essential for researchers and developers in providing a reference for the development of applications and future of the research field.
文摘Epidemiological evidence suggests that there is a direct relationship between the degree of obesity and acute pancreatitis severity.Intake of different fatty acids leads to different types of hyperlipidemias.Adipose degradation by pancreatic lipase generates different free fatty acids,which can exacerbate pancreatitis.Saturated fatty acids(SFAs)play an inflammatory role in human metabolic syndrome and obesity,whereas unsaturated fatty acids(UFAs)are“good fats”that are thought to enhance overall health status.However,it appears that serum UFAs correlate with severe acute pancreatitis.Additionally,the“obesity paradox”suggests that UFAs potentially minimize direct harm to the organ.This review provides an in-depth overview of the role of SFAs and UFAs in acute pancreatitis of hyperlipidemia and discusses potential prevention targets for severe acute pancreatitis.
基金Supported by Key Discipline of Liaoning Traditional Chinese Medicine Clinical Ability Promote Construction Project, No. LNZYXZY201903Development Guidance Plan Projects in Liaoning Province, No. 2019JH-8/10300028
文摘Given the breakthroughs in key technologies,such as image recognition,deep learning and neural networks,artificial intelligence(AI)continues to be increasingly developed,leading to closer and deeper integration with an increasingly data-,knowledge-and brain labor-intensive medical industry.As society continues to advance and individuals become more aware of their health needs,the problems associated with the aging of the population are receiving increasing attention,and there is an urgent demand for improving medical technology,prolonging human life and enhancing health.Digestive system diseases are the most common clinical diseases and are characterized by complex clinical manifestations and a general lack of obvious symptoms in the early stage.Such diseases are very difficult to diagnose and treat.In recent years,the incidence of diseases of the digestive system has increased.As AI applications in the field of health care continue to be developed,AI has begun playing an important role in the diagnosis and treatment of diseases of the digestive system.In this paper,the application of AI in assisted diagnosis and the application and prospects of AI in malignant and benign digestive system diseases are reviewed.
基金financially supported by National National Key Research and Development Program of China (2019YFC1907801, 2018YFC1900305, 2018YFC1901601, 2018YFC1901602)the Natural Science Foundation of China (52004334, 51622406, 51634009 and U1704252)+4 种基金National 111 Project (No. B14034)the National Key R&D Program of China (2018YFC1901901)the Collab-orative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources, Found of State Key Laboratory of Mineral Processing (BGRIMM-KJSKL-2017-13)the Fundamental Research Funds for the Central Universities of Central South University (2019zzts1712020zzts203)the Hunan Provincial Innovation Foundation for Postgraduate (CX20190227)。
文摘Despite the intriguing merits of lithium-sulfur(Li-S) systems, they still suffer from the notorious‘‘shuttling-effect" of polysulfides. Herein, carbon materials with rational tailoring of morphology and pores were designed for strong loading/adsorption with the controlling of energy-storage ability.Through rational tailoring, it is strongly verified that such engineering of evolutions result in variational of sulfur immobilization in the obtained carbon. As expected, the targeted sample delivers a stable capacity of 925 m Ah g^(-1) after 100 loops. Supporting by the "cutting-off" manners, it is disclosed that mesopores in carbon possess more fascinated traits than micro/macropores in improving the utilization of sulfur and restraining Li_(2)S_x(4≤x≤8). Moreover, the long-chain polysulfide could be further consolidated by auto-doping oxygen groups. Supported by in-depth kinetic analysis, it is confirmed that the kinetics of ion/e-transfer during charging and discharging could be accelerated by mesopores, especially in stages of the formation of solid S_(8) and Li_(2)S, further improving the capacity of ion-storage in Li-S battery. Given this, the elaborate study provide significant insights into the effect of pore structure on kinetic performance about Li-storage behaviors in Li-S battery, and give guidance for improving sulfur immobilization.
文摘Objective: Our aim was to investigate clinical and laboratory characteristics of osteoarthritic patients who had amyloid deposition in their knee joints. Methods: Synovial membranes were obtained from 36 patients with knee osteoarthritis (OA) who underwent joint replacement surgery. From this sample, the diagnosis of amyloid was deter- mined by Congo red staining, which demonstrated apple-green birefringence under a polarized microscope. All syn- ovial membranes were immunohistochemically characterized for the expressions of amyloid immunoglobulin light chain (AL-K and AL-,k), serum amyloid-A (SAA), amyloidogenic transthyretin (ATTR), and amyloidogenic 152- microglobulin (A152M). Matrix-assisted laser desorption-ionizaton/time of flight mass spectrometry (MALDI-TOF MS) was used to analyze transthyretin (TTR) isoforms in the serum of each patient. Results: Nine cases (25%) were found to be amyloid-positive. Immunohistochemicaliy, eight cases (88.9%) had ATTR deposition, and one sample (11.1%) was shown to be AL-K-positive. MALDI-TOF MS identified that the TTR in the serum of the patients was unmodified wild-type TTR, TTR-Cys-S-S-Cys, and TTR-Cys-S-S-CysGly. The age at surgery and the disease duration were sig- nificantly higher in the ATTR-positive group than in the ATTR-negative group. Knee score and function score were significantly lower in the ATTR-positive group than in the ATTR-negative group. Conclusions: Amyloid deposition in synovial membranes of OA patients was found to be ATTR and AL-K. TTR in the serum of the patients was unmodified wild-type TTR together with two isoforms. The high age at surgery, long disease duration, and a deteriorated knee function were associated with ATTR amyloid deposition in the osteoarthritic knee joints.
文摘Tumor immunotherapy has emerged as a promising method in cancer treatment,but patient responses vary,necessitating personalized strategies and prognostic biomarkers.This study aimed to identify prognostic factors and construct a predictive model for patient survival outcomes and immunotherapy response.We curated six immunotherapy datasets representing diverse cancer types and treatment regimens.After data preprocessing,patients were stratified based on immunotherapy response.Differential gene expression analysis identified 22 genes consistently dysregulated across multiple datasets.Functional analysis provided critical insights,highlighting the enrichment of these dysregulated genes in immune response pathways and tumor microenvironment-related processes.To create a robust prognostic model,we meticulously employed a multistep approach.Initially,the identified 22 genes underwent rigorous univariate Cox regression analysis to evaluate their individual associations with patient survival outcomes.Genes showing statistical significance(p-values<0.05)at this stage advanced to the subsequent multivariate Cox regression analysis,which aimed to address potential confounding factors and collinearity among genes.From this analysis,we ultimately identified four key genes—ST6GALNAC2,SNORA65,MFAP2,and CDKN2B—that were significantly associated with patient survival outcomes.Incorporating these four key genes along with their corresponding coefficients,we constructed a predictive model.This model’s efficacy was validated through extensive Cox regression analyses,demonstrating its robustness in predicting patient survival outcomes.Furthermore,our model exhibited promising predictive capability for immunotherapy response,providing a potential tool for anticipating treatment efficacy.These findings provide insights into immunotherapy response mechanisms and suggest potential prognostic biomarkers for personalized treatment.Our study contributes to advancing cancer immunotherapy and personalized medicine.