In the ultra-deep strata of the Tarim Basin,the vertical growth process of strike-slip faults remains unclear,and the vertical distribution of fractured-cavity carbonate reservoirs is complex.This paper investigates t...In the ultra-deep strata of the Tarim Basin,the vertical growth process of strike-slip faults remains unclear,and the vertical distribution of fractured-cavity carbonate reservoirs is complex.This paper investigates the vertical growth process of strike-slip faults through field outcrop observations in the Keping area,interpretation of seismic data from the Fuman Oilfield,Tarim Basim,NW China,and structural physical simulation experiments.The results are obtained mainly in four aspects.First,field outcrops and ultra-deep seismic profiles indicate a three-layer structure within the strike-slip fault,consisting of fault core,fracture zone and primary rock.The fault core can be classified into three parts vertically:fracture-cavity unit,fault clay and breccia zone.The distribution of fracture-cavity units demonstrates a distinct pattern of vertical stratification,owing to the structural characteristics and growth process of the slip-strike fault.Second,the ultra-deep seismic profiles show multiple fracture-cavity units in the strike-slip fault zone.These units can be classified into four types:top fractured,middle connected,deep terminated,and intra-layer fractured.Third,structural physical simulation experiments and ultra-deep seismic data interpretation reveal that the strike-slip faults have evolved vertically in three stages:segmental rupture,vertical growth,and connection and extension.The particle image velocimetry detection demonstrates that the initial fracture of the fault zone occurred at the top or bottom and then evolved into cavities gradually along with the fault growth,accompanied by the emergence of new fractures in the middle part of the strata,which subsequently connected with the deep and shallow cavities to form a complete fault zone.Fourth,the ultra-deep carbonate strata primarily develop three types of fractured-cavity reservoirs:flower-shaped fracture,large and deep fault and staggered overlap.The first two types are larger in size with better reservoir conditions,suggesting a significant exploration potential.展开更多
Based on the outcrop survey,3D seismic data interpretation,drilling data analysis,the structural patterns and distribution of fault damage zones in carbonate strata of Tazhong Paleo-uplift were established to reveal t...Based on the outcrop survey,3D seismic data interpretation,drilling data analysis,the structural patterns and distribution of fault damage zones in carbonate strata of Tazhong Paleo-uplift were established to reveal the oil and gas enrichment law in the fault damage zones.The following findings were reached:(1)Through the filed survey,the fault damage zone system consists of fault core,damage zone with branch fault and fracture network.Affected by the active nature of the major faults,the fault damage zones differ in planar pattern and scale along the major faults.(2)3D seismic profiles reveal that there are three types of fault damage zones in carbonate strata in Tazhong paleo-uplift,strike-slip fault damage zones,thrust fault damage zones and superimposed fault damage zones.Featuring3 flowers and 3 root belts in vertical,the strike-slip fault damage zone can be subdivided into linear type,oblique type,feather type and horsetail type in plane.Thrust fault damage zones can be further divided into fault anticline type,anticline type and slope type.As the superimposition result of the above two kinds of fault damage zones,superimposed fault damage zones appear in three patterns,intersect type,encompassment type and penetrating type.(3)Cores from wells and geochemical data show oil and gas may migrate along the major fault and laterally.The feather type in strike-slip fault system,fault anticline type in thrust fault damage zone and intersect type in superimposed fault damage zone are possible sites for high production and efficiency wells.展开更多
基金Supported by the National Natural Science Foundation of China(42362026)Key R&D Project of Xinjiang Uygur Autonomous Region(2024B01015).
文摘In the ultra-deep strata of the Tarim Basin,the vertical growth process of strike-slip faults remains unclear,and the vertical distribution of fractured-cavity carbonate reservoirs is complex.This paper investigates the vertical growth process of strike-slip faults through field outcrop observations in the Keping area,interpretation of seismic data from the Fuman Oilfield,Tarim Basim,NW China,and structural physical simulation experiments.The results are obtained mainly in four aspects.First,field outcrops and ultra-deep seismic profiles indicate a three-layer structure within the strike-slip fault,consisting of fault core,fracture zone and primary rock.The fault core can be classified into three parts vertically:fracture-cavity unit,fault clay and breccia zone.The distribution of fracture-cavity units demonstrates a distinct pattern of vertical stratification,owing to the structural characteristics and growth process of the slip-strike fault.Second,the ultra-deep seismic profiles show multiple fracture-cavity units in the strike-slip fault zone.These units can be classified into four types:top fractured,middle connected,deep terminated,and intra-layer fractured.Third,structural physical simulation experiments and ultra-deep seismic data interpretation reveal that the strike-slip faults have evolved vertically in three stages:segmental rupture,vertical growth,and connection and extension.The particle image velocimetry detection demonstrates that the initial fracture of the fault zone occurred at the top or bottom and then evolved into cavities gradually along with the fault growth,accompanied by the emergence of new fractures in the middle part of the strata,which subsequently connected with the deep and shallow cavities to form a complete fault zone.Fourth,the ultra-deep carbonate strata primarily develop three types of fractured-cavity reservoirs:flower-shaped fracture,large and deep fault and staggered overlap.The first two types are larger in size with better reservoir conditions,suggesting a significant exploration potential.
基金Supported by the China National Science and Technology Major Project(2016ZX05004-004)
文摘Based on the outcrop survey,3D seismic data interpretation,drilling data analysis,the structural patterns and distribution of fault damage zones in carbonate strata of Tazhong Paleo-uplift were established to reveal the oil and gas enrichment law in the fault damage zones.The following findings were reached:(1)Through the filed survey,the fault damage zone system consists of fault core,damage zone with branch fault and fracture network.Affected by the active nature of the major faults,the fault damage zones differ in planar pattern and scale along the major faults.(2)3D seismic profiles reveal that there are three types of fault damage zones in carbonate strata in Tazhong paleo-uplift,strike-slip fault damage zones,thrust fault damage zones and superimposed fault damage zones.Featuring3 flowers and 3 root belts in vertical,the strike-slip fault damage zone can be subdivided into linear type,oblique type,feather type and horsetail type in plane.Thrust fault damage zones can be further divided into fault anticline type,anticline type and slope type.As the superimposition result of the above two kinds of fault damage zones,superimposed fault damage zones appear in three patterns,intersect type,encompassment type and penetrating type.(3)Cores from wells and geochemical data show oil and gas may migrate along the major fault and laterally.The feather type in strike-slip fault system,fault anticline type in thrust fault damage zone and intersect type in superimposed fault damage zone are possible sites for high production and efficiency wells.