Diabetic retinopathy(DR)is a leading cause of vision loss among working-age populations,with early screening significantly reducing the risk of blindness.However,resource-limited regions often face challenges in DR sc...Diabetic retinopathy(DR)is a leading cause of vision loss among working-age populations,with early screening significantly reducing the risk of blindness.However,resource-limited regions often face challenges in DR screening due to a shortage of ophthalmologists.This study reports the implementation and outcomes of the Chinese local standard DB52/T 1726-2023,Regulations for the application of diabetic retinopathy screening artificial intelligence,in Cambodian healthcare institutions.A pilot DR screening program with independent operational capability is established by providing a non-mydriatic fundus camera and deploying a localized diabetic retinopathy artificial intelligence(DR-AI)screening platform at the Cambodia-Kingdom Friendship Hospital in Phnom Penh,along with comprehensive training.From January to August 2025,a total of 565 patients with type 2 diabetes were screened,yielding a DR detection rate of 26.0%(147 cases).Research findings demonstrate that applying mature Chinese DR-AI screening standards and technological solutions through international collaboration in regions with a scarcity of ophthalmic professionals is both feasible and effective.This project serves as a reference for promoting DR-AI in resource-constrained countries and regions,highlighting its significant potential to leverage AI in addressing the global burden of chronic diseases and advancing the modernization of health systems.展开更多
针对红外与可见光图像融合中的颜色失真和热目标细节丢失问题,提出基于融合曲线的零样本红外与可见光图像融合方法(Zero-Shot Infrared and Visible Image Fusion Based on Fusion Curve,ZSFuCu).首先,将融合任务转化为基于深度网络的...针对红外与可见光图像融合中的颜色失真和热目标细节丢失问题,提出基于融合曲线的零样本红外与可见光图像融合方法(Zero-Shot Infrared and Visible Image Fusion Based on Fusion Curve,ZSFuCu).首先,将融合任务转化为基于深度网络的图像特定曲线估计过程,通过像素级非线性映射实现热目标纹理的增强与色彩特征的保留.然后,设计多维度视觉感知损失函数,从对比度增强、颜色保持及空间连续性三个维度构建约束机制,协同优化融合图像的高频信息与色彩分布,保留结构特征和关键信息.最后,采用零样本训练策略,仅需单个红外与可见光图像对即可完成参数的自适应优化,具备在不同照明条件下融合的强鲁棒性.实验表明,ZSFuCu在目标突出性、细节丰富度及颜色自然度方面具有显著优势,兼具有效性与实用性.展开更多
基金funded by the Chronic Disease Management Research Project of National Health Commission Capacity Building and Continuing Education Center 2025(GWJJMB202510024146)the Post-Subsidy Project for Standard Development of Guizhou Provincial Market Supervision and Administration Bureau 2025(DB52/T1726-2023)the Guizhou Provincial Health Commission Science and Technology Fund Project(gzwkj2024-076,gzwkj2026-146).
文摘Diabetic retinopathy(DR)is a leading cause of vision loss among working-age populations,with early screening significantly reducing the risk of blindness.However,resource-limited regions often face challenges in DR screening due to a shortage of ophthalmologists.This study reports the implementation and outcomes of the Chinese local standard DB52/T 1726-2023,Regulations for the application of diabetic retinopathy screening artificial intelligence,in Cambodian healthcare institutions.A pilot DR screening program with independent operational capability is established by providing a non-mydriatic fundus camera and deploying a localized diabetic retinopathy artificial intelligence(DR-AI)screening platform at the Cambodia-Kingdom Friendship Hospital in Phnom Penh,along with comprehensive training.From January to August 2025,a total of 565 patients with type 2 diabetes were screened,yielding a DR detection rate of 26.0%(147 cases).Research findings demonstrate that applying mature Chinese DR-AI screening standards and technological solutions through international collaboration in regions with a scarcity of ophthalmic professionals is both feasible and effective.This project serves as a reference for promoting DR-AI in resource-constrained countries and regions,highlighting its significant potential to leverage AI in addressing the global burden of chronic diseases and advancing the modernization of health systems.
文摘针对红外与可见光图像融合中的颜色失真和热目标细节丢失问题,提出基于融合曲线的零样本红外与可见光图像融合方法(Zero-Shot Infrared and Visible Image Fusion Based on Fusion Curve,ZSFuCu).首先,将融合任务转化为基于深度网络的图像特定曲线估计过程,通过像素级非线性映射实现热目标纹理的增强与色彩特征的保留.然后,设计多维度视觉感知损失函数,从对比度增强、颜色保持及空间连续性三个维度构建约束机制,协同优化融合图像的高频信息与色彩分布,保留结构特征和关键信息.最后,采用零样本训练策略,仅需单个红外与可见光图像对即可完成参数的自适应优化,具备在不同照明条件下融合的强鲁棒性.实验表明,ZSFuCu在目标突出性、细节丰富度及颜色自然度方面具有显著优势,兼具有效性与实用性.