The timings and geodynamic controls of Mo,Au,and Au-Mo deposits in the Xiaoqinling Orogen(>630 t Au and 115,000 t Mo),a rare Au-Mo province globally,are addressed by a combination of mineral par-ageneses,crystallin...The timings and geodynamic controls of Mo,Au,and Au-Mo deposits in the Xiaoqinling Orogen(>630 t Au and 115,000 t Mo),a rare Au-Mo province globally,are addressed by a combination of mineral par-ageneses,crystalline mineralogy,geochemistry,and Re-Os and U-Pb geochronology in the Dahu,Qinnan,and Yangzhaiyu deposits.The Xiaoqinling Orogen comprises an E-W-trending fold and thrust system with repeated structural reactivation and the Mo or Au orebodies in these deposits are dominantly controlled by E-W-trending and NW-SE-trending shear zones.Molybdenum mineralization related to K-feldspar alteration comprises early molybdenite,pyrite,rutile,and monazite within gray quartz veins plus late molybdenite and pyrite within white quartz veins in the Dahu and Qinnan Au-Mo deposits.Early and late Au mineralization events have similar mineral assemblages of pyrite,native gold±Au-Ag-Te minerals,rutile,and monazite associated with quartz-sericite alteration at Yangzhaiyu.The early dissem-inated molybdenite is characterized by rhombohedral polytype and oscillatory Re zoning,in contrast to the late molybdenite with a coexistence of rhombohedral and hexagonal polytypes and irregularly distributed Re.The early molybdenite has a Re-Os isochron age of 222.5±1.3 Ma,compatible with a monazite U-Pb age of 224±6.1 Ma,whereas late molybdenite provides a Re-Os isochron age of 185.0±12 Ma,with the implication that the 3R-polytype molybdenite with oscillatory Re zoning is more suitable for high-precision dating.The early and late Au mineralization have a pyrite Re-Os age of 202.0±5.9 Ma and U-Pb age of 124.0±1.3 Ma,respectively.In accordance with its complex geodynamic setting,geological and geochronological studies record a complicated 100-million-year mineralization history with multiple magmatic-hydrothermal Mo and orogenic Au mineralization events that formed within a structural framework of multiply reactivated shear zones.展开更多
The growth in biomedical data resources has raised potential privacy concerns and risks of genetic information leakage. For instance, exome sequencing aids clinical decisions by comparing data through web services, bu...The growth in biomedical data resources has raised potential privacy concerns and risks of genetic information leakage. For instance, exome sequencing aids clinical decisions by comparing data through web services, but it requires significant trust between users and providers. To alleviate privacy concerns, the most commonly used strategy is to anonymize sensitive data. Unfortunately, studies have shown that anonymization is insufficient to protect against reidentification attacks. Recently, privacy-preserving technologies have been applied to preserve application utility while protecting the privacy of biomedical data. We present the PICOTEES framework, a privacy-preserving online service of phenotype exploration for genetic-diagnostic variants (https://birthdefectlab.cn:3000/). PICOTEES enables privacy-preserving queries of the phenotype spectrum for a single variant by utilizing trusted execution environment technology, which can protect the privacy of the user's query information, backend models, and data, as well as the final results. We demonstrate the utility and performance of PICOTEES by exploring a bioinformatics dataset. The dataset is from a cohort containing 20,909 genetic testing patients with 3,152,508 variants from the Children's Hospital of Fudan University in China, dominated by the Chinese Han population (>99.9%). Our query results yield a large number of unreported diagnostic variants and previously reported pathogenicity.展开更多
Based on a combination of morphology and molecular data of ribosomal DNA genes,a new diatom genus Lineaperpetua gen.nov.Yu,You,Kociolek&Wang is described.The features that help define Lineaperpetua at the level of...Based on a combination of morphology and molecular data of ribosomal DNA genes,a new diatom genus Lineaperpetua gen.nov.Yu,You,Kociolek&Wang is described.The features that help define Lineaperpetua at the level of genus include:a tangentially undulated valve face;continuous cribra areolae on the valve interior consisting of pores arranged as strips;single rimoportula located inside the ring of marginal fultoportulae.Additionally,phylogenetic analysis based on nuclear small subunit(SSU)rDNA sequences and nuclear large subunit(LSU)rDNA gene placed the three strains of L.lacustris in a single,monophyletic clade at a considerable sequence distance from the other genera(Thalassiosira,Conticribra,Planktoniella,Shinodiscus,and other genera)belonging to Thalassiosirales.Despite the similarities with some species of Thalassiosira,Conticribra,and Spicaticribra,the suite of features found in Lineaperpetua differentiate it from these other genera.These molecular data and morphological characters suggest an affinity of the new genus to the Thalassiosiraceae.展开更多
Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)s...Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs.展开更多
The dynamic range of the nuclear magnetic resonance gyroscope can be effectively improved through the closedloop control scheme,which is crucial to its application in inertial measurement.This paper presents the analy...The dynamic range of the nuclear magnetic resonance gyroscope can be effectively improved through the closedloop control scheme,which is crucial to its application in inertial measurement.This paper presents the analytical transfer function of Xe closed-loop system in the nuclear magnetic resonance gyroscope considering Rb–Xe coupling effect.It not only considers the dynamic characteristics of the system more comprehensively,but also adds the influence of the practical filters in the gyro signal processing system,which can obtain the accurate response characteristics of signal frequency and amplitude at the same time.The numerical results are compared with an experimentally verified simulation program,which indicate great agreement.The research results of this paper are of great significance to the practical application and development of the nuclear magnetic resonance gyroscope.展开更多
基金supported by the National Key Research and Development Project of China(2020YFA0714802)the National Natural Science Foundation of China(42330809)the 111 Project of the Ministry of Science and Technology(BP0719021).
文摘The timings and geodynamic controls of Mo,Au,and Au-Mo deposits in the Xiaoqinling Orogen(>630 t Au and 115,000 t Mo),a rare Au-Mo province globally,are addressed by a combination of mineral par-ageneses,crystalline mineralogy,geochemistry,and Re-Os and U-Pb geochronology in the Dahu,Qinnan,and Yangzhaiyu deposits.The Xiaoqinling Orogen comprises an E-W-trending fold and thrust system with repeated structural reactivation and the Mo or Au orebodies in these deposits are dominantly controlled by E-W-trending and NW-SE-trending shear zones.Molybdenum mineralization related to K-feldspar alteration comprises early molybdenite,pyrite,rutile,and monazite within gray quartz veins plus late molybdenite and pyrite within white quartz veins in the Dahu and Qinnan Au-Mo deposits.Early and late Au mineralization events have similar mineral assemblages of pyrite,native gold±Au-Ag-Te minerals,rutile,and monazite associated with quartz-sericite alteration at Yangzhaiyu.The early dissem-inated molybdenite is characterized by rhombohedral polytype and oscillatory Re zoning,in contrast to the late molybdenite with a coexistence of rhombohedral and hexagonal polytypes and irregularly distributed Re.The early molybdenite has a Re-Os isochron age of 222.5±1.3 Ma,compatible with a monazite U-Pb age of 224±6.1 Ma,whereas late molybdenite provides a Re-Os isochron age of 185.0±12 Ma,with the implication that the 3R-polytype molybdenite with oscillatory Re zoning is more suitable for high-precision dating.The early and late Au mineralization have a pyrite Re-Os age of 202.0±5.9 Ma and U-Pb age of 124.0±1.3 Ma,respectively.In accordance with its complex geodynamic setting,geological and geochronological studies record a complicated 100-million-year mineralization history with multiple magmatic-hydrothermal Mo and orogenic Au mineralization events that formed within a structural framework of multiply reactivated shear zones.
基金funded by the Shanghai Hospital Development Center(SHDC2020CR6028-002 to W.Zhou)National Key R&D Program of China(2020YFC2006402 to Y.Lu)+7 种基金National Key R&D Program of China(2022ZD0116003 to X.Dong)the Science and Technology Commission of Shanghai(22002400700 to S.Wu)Shanghai Municipal Science and Technology Major Project(20Z11900600 to W.Zhou)National Key Research and Development Program(2018YFC0116903 to W.Zhou)Major Research Projects for Young and Middle-aged People of Fujian Province(2021ZQNZD017 to Y.Lu)supported by Key Lab Information Network Security,Ministry of Public Security(to H.Zheng and S.Wang)“Pioneer”and”Leading Goose”R&D Program of Zhejiang(No.2022C01126 to Q.Sun and S.Wang)National Key R&D Program of China(2021YFC2500802 and 2021YFC2500806 to H.Zheng and S.Wang).
文摘The growth in biomedical data resources has raised potential privacy concerns and risks of genetic information leakage. For instance, exome sequencing aids clinical decisions by comparing data through web services, but it requires significant trust between users and providers. To alleviate privacy concerns, the most commonly used strategy is to anonymize sensitive data. Unfortunately, studies have shown that anonymization is insufficient to protect against reidentification attacks. Recently, privacy-preserving technologies have been applied to preserve application utility while protecting the privacy of biomedical data. We present the PICOTEES framework, a privacy-preserving online service of phenotype exploration for genetic-diagnostic variants (https://birthdefectlab.cn:3000/). PICOTEES enables privacy-preserving queries of the phenotype spectrum for a single variant by utilizing trusted execution environment technology, which can protect the privacy of the user's query information, backend models, and data, as well as the final results. We demonstrate the utility and performance of PICOTEES by exploring a bioinformatics dataset. The dataset is from a cohort containing 20,909 genetic testing patients with 3,152,508 variants from the Children's Hospital of Fudan University in China, dominated by the Chinese Han population (>99.9%). Our query results yield a large number of unreported diagnostic variants and previously reported pathogenicity.
基金the Postdoctoral Science Foundation of China(No.2021 M 703434)the National Natural Science Foundation of China(Nos.32100165,32170205)the Natural Science Foundation of Shanghai(No.21 ZR 144730)。
文摘Based on a combination of morphology and molecular data of ribosomal DNA genes,a new diatom genus Lineaperpetua gen.nov.Yu,You,Kociolek&Wang is described.The features that help define Lineaperpetua at the level of genus include:a tangentially undulated valve face;continuous cribra areolae on the valve interior consisting of pores arranged as strips;single rimoportula located inside the ring of marginal fultoportulae.Additionally,phylogenetic analysis based on nuclear small subunit(SSU)rDNA sequences and nuclear large subunit(LSU)rDNA gene placed the three strains of L.lacustris in a single,monophyletic clade at a considerable sequence distance from the other genera(Thalassiosira,Conticribra,Planktoniella,Shinodiscus,and other genera)belonging to Thalassiosirales.Despite the similarities with some species of Thalassiosira,Conticribra,and Spicaticribra,the suite of features found in Lineaperpetua differentiate it from these other genera.These molecular data and morphological characters suggest an affinity of the new genus to the Thalassiosiraceae.
基金supported by the National Natural Science Foundation of China(Grant Nos.52072322,22209137,51604250)the Department of Science and Technology of Sichuan Province(CN)(GrantNos.2022YFG0294,23GJHZ0147,23ZDYF0262)Production-Education Integration Demonstration Project of Sichuan Province"Photovoltaic Industry Production-Education Integration Comprehensive Demonstration Base of Sichuan Province"(Sichuan Financial Education[2022]No.106.n)。
文摘Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs.
基金the Natural Science Foundation of China(Grant Nos.61701515 and U23B2066)the Nat-ural Science Foundation of Hunan Province,China(Grant No.2021JJ40700)the Research Project of National Uni-versity of Defense Technology(Grant No.ZK22-18).
文摘The dynamic range of the nuclear magnetic resonance gyroscope can be effectively improved through the closedloop control scheme,which is crucial to its application in inertial measurement.This paper presents the analytical transfer function of Xe closed-loop system in the nuclear magnetic resonance gyroscope considering Rb–Xe coupling effect.It not only considers the dynamic characteristics of the system more comprehensively,but also adds the influence of the practical filters in the gyro signal processing system,which can obtain the accurate response characteristics of signal frequency and amplitude at the same time.The numerical results are compared with an experimentally verified simulation program,which indicate great agreement.The research results of this paper are of great significance to the practical application and development of the nuclear magnetic resonance gyroscope.