In a recent paper(Luo H et al.,2022),we found that the peak amplitudes of diurnal magnetic variations,measured during martian days(sols)at the InSight landing site,exhibited quasi Carrington-Rotation(qCR)periods at hi...In a recent paper(Luo H et al.,2022),we found that the peak amplitudes of diurnal magnetic variations,measured during martian days(sols)at the InSight landing site,exhibited quasi Carrington-Rotation(qCR)periods at higher eigenmodes of the natural orthogonal components(NOC);these results were based on~664 sols of magnetic field measurements.However,the source of these periodic variations is still unknown.In this paper we introduce the neutral-wind driven ionospheric dynamo current model(e.g.,Lillis et al.,2019)to investigate the source.Four candidates-the draped IMF,electron density/plasma density,the neutral densities,and the electron temperature in the ionosphere with artificial qCR periodicity,are applied in the modeling to find the main factor likely to be causing the observed surface magnetic field variations that exhibit the same qCR periods.Results show that the electron density/plasma density,which controls the total conductivity in the dynamo region,appears to account for the greatest part of the surface qCR variations;its contribution reaches about 67.6%.The draped IMF,the neutral densities,and the electron temperature account,respectively,for only about 12.9%,10.3%,and 9.2%of the variations.Our study implies that the qCR magnetic variations on the Martian surface are due primarily to variations of the dynamo currents caused by the electron density variations.We suggest also that the timevarying fields with the qCR period could be used to probe the Martian interior's electrical conductivity structure to a depth of at least 700 km.展开更多
High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science ...High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science Satellite-1A (MSS-1A),added to data from other space-based magnetometers,should increase significantly the ability of scientists to observe changes in Earth’s magnetic field over time and space.Additionally,the MSS-1A’s FGM is intended to help identify magnetic disturbances affecting the spacecraft itself.This report focuses on the in-flight calibration of the MSS-1 FGM.A scalar calibration,independent of geomagnetic field models,was performed to correct offsets,sensitivities,and misalignment angles of the FGM.Using seven months of data,we find that the in-flight calibration parameters show good stability.We determined Euler angles describing the rotational relationship between the FGM and the Advanced Stellar Compass (ASC) coordinate system using two approaches:calibration with the CHAOS-7 geomagnetic field model,and simultaneous estimation of Euler angles and Gaussian spherical harmonic coefficients through self-consistent modeling.The accuracy of Euler angles describing the rotation was better than 18 arcsec.The calibrated FGM data exhibit good agreement with the calibrated data of the Vector Field Magnetometer (VFM),which is the primary vector magnetometer of the satellite.These calibration efforts have significantly improved the accuracy of the FGM measurements,which are now providing reliable data for geomagnetic field studies that promise to advance our understanding of the Earth’s magnetic environment.展开更多
BACKGROUND Depression,non-suicidal self-injury(NSSI),and suicide attempts(SA)often co-occur during adolescence and are associated with long-term adverse health outcomes.Unfortunately,neural mechanisms underlying self-...BACKGROUND Depression,non-suicidal self-injury(NSSI),and suicide attempts(SA)often co-occur during adolescence and are associated with long-term adverse health outcomes.Unfortunately,neural mechanisms underlying self-injury and SA are poorly understood in depressed adolescents but likely relate to the structural abnormalities in brain regions.AIM To investigate structural network communication within large-scale brain networks in adolescents with depression.METHODS We constructed five distinct network communication models to evaluate structural network efficiency at the whole-brain level in adolescents with depression.Diffusion magnetic resonance imaging data were acquired from 32 healthy controls and 85 depressed adolescents,including 17 depressed adolescents without SA or NSSI(major depressive disorder group),27 depressed adolescents with NSSI but no SA(NSSI group),and 41 depressed adolescents with SA and NSSI(NSSI+SA group).RESULTS Significant differences in structural network communication were observed across the four groups,involving spatially widespread brain regions,particularly encompassing cortico-cortical connections(e.g.,dorsal posterior cingulate gyrus and the right ventral posterior cingulate gyrus;connections based on precentral gyrus)and cortico-subcortical circuits(e.g.,the nucleus accumbens-frontal circuit).In addition,we examined whether compromised communication efficiency was linked to clinical symptoms in the depressed adolescents.We observed significant correlations between network communication efficiencies and clinical scale scores derived from depressed adolescents with NSSI and SA.CONCLUSION This study provides evidence of structural network communication differences in depressed adolescents with NSSI and SA,highlighting impaired neuroanatomical communication efficiency as a potential contributor to their symptoms.These findings offer new insights into the pathophysiological mechanisms underlying the comorbidity of NSSI and SA in adolescent depression.展开更多
In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this neces...In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this necessitates effective management of computation and wireless resources tailored to the requirements of various services.The heterogeneity of computation resources and interference among shared wireless resources pose significant coordination and management challenges.To solve these problems,this work provides an overview of multi-dimensional resource management in 6G SIG RAN,including computation and wireless resource.Firstly it provides with a review of current investigations on computation and wireless resource management and an analysis of existing deficiencies and challenges.Then focusing on the provided challenges,the work proposes an MEC-based computation resource management scheme and a mixed numerology-based wireless resource management scheme.Furthermore,it outlines promising future technologies,including joint model-driven and data-driven resource management technology,and blockchain-based resource management technology within the 6G SIG network.The work also highlights remaining challenges,such as reducing communication costs associated with unstable ground-to-satellite links and overcoming barriers posed by spectrum isolation.Overall,this comprehensive approach aims to pave the way for efficient and effective resource management in future 6G networks.展开更多
[Objectives]This study was conducted to quickly qualitatively and quantitatively analyze the residues of 10 plant growth regulators(PGRs)in bean sprouts.[Methods]Using bean sprouts as the test material,a high-performa...[Objectives]This study was conducted to quickly qualitatively and quantitatively analyze the residues of 10 plant growth regulators(PGRs)in bean sprouts.[Methods]Using bean sprouts as the test material,a high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS)method was established to determine the residual levels of 10 PGRs in bean sprouts.[Results]Under optimized conditions,the retention time of the 10 PGRs ranged from 6.45 to 11.43 min.When the mass concentration ranged from 0.005 to 0.05μg/ml,all PGRs exhibited good linearity,with correlation coefficients(r)≥0.9991.The limits of detection(LODs,S/N=3)were in the range of 0.30-0.92μg/kg,and the limits of quantification(LOQs)were in the range of 0.50-2.10μg/kg.The average recovery values at three concentration levels ranged from 80%to 105.8%,with relative standard deviations(RSD s,n=6)of 2.8%-7.5%.[Conclusions]This method is simple and accurate,and provides technical reference for food safety monitoring.展开更多
Perforin is a pore-forming protein engaged mainly in mediating target T cell death and is employed by cytotoxic T lymphocytes (CTLs) and natural killer cells. However, whether it also plays a role in conventional C...Perforin is a pore-forming protein engaged mainly in mediating target T cell death and is employed by cytotoxic T lymphocytes (CTLs) and natural killer cells. However, whether it also plays a role in conventional CD4^+ T cell function remains unclear. Here we report that in perforin-deficient (PKO) mice, CD4^+ T cells are hyperproliferative in response to T cell receptor (TCR) stimulation. This feature of hyperproliferation is accompanied by the enhancement both in cell division and in IL-2 secretion. It seems that the perforin deficiency does not influence T cell development in thymus spleen and lymph node. In vivo, perforin deficiency results in increased antigen-specific T cell proliferation and antibody production. Furthermore, PKO mice are more susceptible to experimental autoimmune uveitis. To address the molecular mechanism, we found that after TCR stimulation, CD4^+ T cells from PKO mice display an increased intracellular calcium flux and subsequently enhance activation of transcription factor NFAT1. Our results indicate that perforin plays a negative role in regulating CD4^+ T cell activation and immune response by affecting TCR-dependent Ca^2+ signaling.展开更多
Flow over a traveling wavy foil attached with a flexible plate has been numerically investigated using the lattice Boltzmann method combined with the immersed boundary method. The influence of the flexibility and leng...Flow over a traveling wavy foil attached with a flexible plate has been numerically investigated using the lattice Boltzmann method combined with the immersed boundary method. The influence of the flexibility and length of the caudal fin on the locomotion of swimming fish through this simplified model, whereas the fish body is modeled by the undulating foil and the caudal fin by the plate passively flapping as a consequence of fluid-structure interaction. It is found that the plate flexibility denoted by the bending stiffness, as well as the length ratio of tail and body, plays an important role in improving thrust generation and propulsive efficiency. It is also revealed that there exists a parameter region of the plate length and stiffness, in which positive propeller efficiency can be achieved. The effect of the passively flapping flexible plate on the pressure field and the vortex production on the wake is further discussed. It is found that when the length ratio of caudal fin and body is greater than 0.2, a reverse von Kármán vortex street occurs when the bending stiffness is about greater than 1.0, and a great thrust is generated as a result of a large pressure difference occurring across the flexible plate. This work provides physical insight into the role of the caudal fin in fish swimming and may inspire the design of robotic fish.展开更多
Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materi...Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation.展开更多
Paper-based sensing platform is a point of need analytical toolkit for safety testing.However,the sensitivity,specificity,and simplicity are still challenging.Herein,we report a novel strategy(Au/δ-MnO_(2) hollow nan...Paper-based sensing platform is a point of need analytical toolkit for safety testing.However,the sensitivity,specificity,and simplicity are still challenging.Herein,we report a novel strategy(Au/δ-MnO_(2) hollow nanosphere and 3,3′,5,5′-tetramethylbenzidine(TMB)induced test strips for signal-on detection)that can be utilized for hexavalent chromium(Cr^(6+))detection.Interestingly,Cr^(6+)(CrO_(4)^(2−)) as a smart switch can remarkably enhance the oxidase-like activity of Au/δ-MnO_(2) hollow nanosphere.The presence of Cr^(6+) can regulate the surface electronic redistribution of Au/δ-MnO_(2) and adjust the geometric configuration,which leads to the improvement in oxidase-like activity of Au/δ-MnO_(2).As a proof-of-concept application,a visual paper-based sensing platform of Cr^(6+) along with quantitative analysis by the test strips was successfully constructed.This paper-based sensing platform exhibits a linear range with excellent selectivity for other interfering substances and lower limit of detection of 0.09μmol·L^(−1),providing a promising toolkit at-home Cr^(6+) measurement and environmental monitoring.展开更多
Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active mate...Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode.展开更多
Catalysts can significantly promote the reaction dynamics and are therefore considered crucial components for achieving high electrochemical energy conversion efficiency.However,the active sites of the catalysts,parti...Catalysts can significantly promote the reaction dynamics and are therefore considered crucial components for achieving high electrochemical energy conversion efficiency.However,the active sites of the catalysts,particularly for nano-level and atomic-level catalysts commonly undergo reconstruction under practical applications.Therefore,obtaining an in-depth and systematic understanding on the real active sites through in situ/operando characterization techniques is a prerequisite for establishing the structureperformance relationship and guiding the future design of more efficient electrocatalysts.Herein,we summarize the recent progress of in situ/operando characterization techniques for identifying the nature of active sites of electrocatalysts when used in electrocatalytic energy conversion reaction.Specifically,our focus lies in the fundamental principles of various in situ/operando characterization techniques,with particular emphasis on their applications for electrocatalytic reactions.Beyond that,the challenges and perspective insights are also added in the final section to highlight the future direction of this important field.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB41010304)the National Key R&D Program of China (Grant No.2018YFC1503806)the National Natural Science Foundation of China (41874080, 41674168, 41874197)
文摘In a recent paper(Luo H et al.,2022),we found that the peak amplitudes of diurnal magnetic variations,measured during martian days(sols)at the InSight landing site,exhibited quasi Carrington-Rotation(qCR)periods at higher eigenmodes of the natural orthogonal components(NOC);these results were based on~664 sols of magnetic field measurements.However,the source of these periodic variations is still unknown.In this paper we introduce the neutral-wind driven ionospheric dynamo current model(e.g.,Lillis et al.,2019)to investigate the source.Four candidates-the draped IMF,electron density/plasma density,the neutral densities,and the electron temperature in the ionosphere with artificial qCR periodicity,are applied in the modeling to find the main factor likely to be causing the observed surface magnetic field variations that exhibit the same qCR periods.Results show that the electron density/plasma density,which controls the total conductivity in the dynamo region,appears to account for the greatest part of the surface qCR variations;its contribution reaches about 67.6%.The draped IMF,the neutral densities,and the electron temperature account,respectively,for only about 12.9%,10.3%,and 9.2%of the variations.Our study implies that the qCR magnetic variations on the Martian surface are due primarily to variations of the dynamo currents caused by the electron density variations.We suggest also that the timevarying fields with the qCR period could be used to probe the Martian interior's electrical conductivity structure to a depth of at least 700 km.
文摘High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science Satellite-1A (MSS-1A),added to data from other space-based magnetometers,should increase significantly the ability of scientists to observe changes in Earth’s magnetic field over time and space.Additionally,the MSS-1A’s FGM is intended to help identify magnetic disturbances affecting the spacecraft itself.This report focuses on the in-flight calibration of the MSS-1 FGM.A scalar calibration,independent of geomagnetic field models,was performed to correct offsets,sensitivities,and misalignment angles of the FGM.Using seven months of data,we find that the in-flight calibration parameters show good stability.We determined Euler angles describing the rotational relationship between the FGM and the Advanced Stellar Compass (ASC) coordinate system using two approaches:calibration with the CHAOS-7 geomagnetic field model,and simultaneous estimation of Euler angles and Gaussian spherical harmonic coefficients through self-consistent modeling.The accuracy of Euler angles describing the rotation was better than 18 arcsec.The calibrated FGM data exhibit good agreement with the calibrated data of the Vector Field Magnetometer (VFM),which is the primary vector magnetometer of the satellite.These calibration efforts have significantly improved the accuracy of the FGM measurements,which are now providing reliable data for geomagnetic field studies that promise to advance our understanding of the Earth’s magnetic environment.
基金Supported by the National Natural Science Foundation of China,No.81871081 and No.62201265the Fundamental Research Funds for the Central Universities,No.NJ2024029-14the Talent Support Programs of Wuxi Health Commission,No.BJ2023085,No.FZXK2021012,and No.M202358.
文摘BACKGROUND Depression,non-suicidal self-injury(NSSI),and suicide attempts(SA)often co-occur during adolescence and are associated with long-term adverse health outcomes.Unfortunately,neural mechanisms underlying self-injury and SA are poorly understood in depressed adolescents but likely relate to the structural abnormalities in brain regions.AIM To investigate structural network communication within large-scale brain networks in adolescents with depression.METHODS We constructed five distinct network communication models to evaluate structural network efficiency at the whole-brain level in adolescents with depression.Diffusion magnetic resonance imaging data were acquired from 32 healthy controls and 85 depressed adolescents,including 17 depressed adolescents without SA or NSSI(major depressive disorder group),27 depressed adolescents with NSSI but no SA(NSSI group),and 41 depressed adolescents with SA and NSSI(NSSI+SA group).RESULTS Significant differences in structural network communication were observed across the four groups,involving spatially widespread brain regions,particularly encompassing cortico-cortical connections(e.g.,dorsal posterior cingulate gyrus and the right ventral posterior cingulate gyrus;connections based on precentral gyrus)and cortico-subcortical circuits(e.g.,the nucleus accumbens-frontal circuit).In addition,we examined whether compromised communication efficiency was linked to clinical symptoms in the depressed adolescents.We observed significant correlations between network communication efficiencies and clinical scale scores derived from depressed adolescents with NSSI and SA.CONCLUSION This study provides evidence of structural network communication differences in depressed adolescents with NSSI and SA,highlighting impaired neuroanatomical communication efficiency as a potential contributor to their symptoms.These findings offer new insights into the pathophysiological mechanisms underlying the comorbidity of NSSI and SA in adolescent depression.
基金supported by the National Key Research and Development Program of China(No.2021YFB2900504).
文摘In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this necessitates effective management of computation and wireless resources tailored to the requirements of various services.The heterogeneity of computation resources and interference among shared wireless resources pose significant coordination and management challenges.To solve these problems,this work provides an overview of multi-dimensional resource management in 6G SIG RAN,including computation and wireless resource.Firstly it provides with a review of current investigations on computation and wireless resource management and an analysis of existing deficiencies and challenges.Then focusing on the provided challenges,the work proposes an MEC-based computation resource management scheme and a mixed numerology-based wireless resource management scheme.Furthermore,it outlines promising future technologies,including joint model-driven and data-driven resource management technology,and blockchain-based resource management technology within the 6G SIG network.The work also highlights remaining challenges,such as reducing communication costs associated with unstable ground-to-satellite links and overcoming barriers posed by spectrum isolation.Overall,this comprehensive approach aims to pave the way for efficient and effective resource management in future 6G networks.
基金Supported by Outstanding Talent Development Program of Hebei ProvinceTangshan Talent Funding Project(A202202005).
文摘[Objectives]This study was conducted to quickly qualitatively and quantitatively analyze the residues of 10 plant growth regulators(PGRs)in bean sprouts.[Methods]Using bean sprouts as the test material,a high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS)method was established to determine the residual levels of 10 PGRs in bean sprouts.[Results]Under optimized conditions,the retention time of the 10 PGRs ranged from 6.45 to 11.43 min.When the mass concentration ranged from 0.005 to 0.05μg/ml,all PGRs exhibited good linearity,with correlation coefficients(r)≥0.9991.The limits of detection(LODs,S/N=3)were in the range of 0.30-0.92μg/kg,and the limits of quantification(LOQs)were in the range of 0.50-2.10μg/kg.The average recovery values at three concentration levels ranged from 80%to 105.8%,with relative standard deviations(RSD s,n=6)of 2.8%-7.5%.[Conclusions]This method is simple and accurate,and provides technical reference for food safety monitoring.
基金Acknowledgments We thank Drs Hua Gu (Columbia University, USA), Weiguo Zhang (Duke University Medical Center, USA), and Youhai H Chen (University of Pennsylvania, USA) for reviewing the manuscript and for suggestions, and Dr Ilia Voskoboinik (Peter MacCallum Cancer Centre, Australia) for providing the mouse perforin cDNA in pKS(+) Bluescript. Ragl^-/- mice were gifts from Xiaolong Liu (Shanghai Institutes for Biological Sciences, China). This work was supported by grants from the National Natural Science Foundation of China (30325018, 30530700, 30623003, and 30421005) and CAS project (KSCX1-YW-R-43), grants from the National Key Project 973 (2006CB504300 and 2007CB512404), grants from the Technology Commission of Shanghai Municipality (04DZ14902, 04DZ19108, 06DZ22032, 04DZ19112, 07XD14033, and 07DZ22916), 863 key project (2006AA02A247), and a grant from the E-institutes of Shanghai Universities Immunology Division.
文摘Perforin is a pore-forming protein engaged mainly in mediating target T cell death and is employed by cytotoxic T lymphocytes (CTLs) and natural killer cells. However, whether it also plays a role in conventional CD4^+ T cell function remains unclear. Here we report that in perforin-deficient (PKO) mice, CD4^+ T cells are hyperproliferative in response to T cell receptor (TCR) stimulation. This feature of hyperproliferation is accompanied by the enhancement both in cell division and in IL-2 secretion. It seems that the perforin deficiency does not influence T cell development in thymus spleen and lymph node. In vivo, perforin deficiency results in increased antigen-specific T cell proliferation and antibody production. Furthermore, PKO mice are more susceptible to experimental autoimmune uveitis. To address the molecular mechanism, we found that after TCR stimulation, CD4^+ T cells from PKO mice display an increased intracellular calcium flux and subsequently enhance activation of transcription factor NFAT1. Our results indicate that perforin plays a negative role in regulating CD4^+ T cell activation and immune response by affecting TCR-dependent Ca^2+ signaling.
基金This work was supported by the National Natural Science Foundation of China(Grants 92052301,91752110,11621202,and 1572312)Science Challenge Project(Grant TZ2016001).
文摘Flow over a traveling wavy foil attached with a flexible plate has been numerically investigated using the lattice Boltzmann method combined with the immersed boundary method. The influence of the flexibility and length of the caudal fin on the locomotion of swimming fish through this simplified model, whereas the fish body is modeled by the undulating foil and the caudal fin by the plate passively flapping as a consequence of fluid-structure interaction. It is found that the plate flexibility denoted by the bending stiffness, as well as the length ratio of tail and body, plays an important role in improving thrust generation and propulsive efficiency. It is also revealed that there exists a parameter region of the plate length and stiffness, in which positive propeller efficiency can be achieved. The effect of the passively flapping flexible plate on the pressure field and the vortex production on the wake is further discussed. It is found that when the length ratio of caudal fin and body is greater than 0.2, a reverse von Kármán vortex street occurs when the bending stiffness is about greater than 1.0, and a great thrust is generated as a result of a large pressure difference occurring across the flexible plate. This work provides physical insight into the role of the caudal fin in fish swimming and may inspire the design of robotic fish.
基金supported by the National Natural Science Foundation of China(52161145409,21976116)SAFEA of China("Belt and Road”Innovative Talent Exchange Foreign Expert Project#2023041004L)(High-end Foreign Expert Project#G2023041021L)the Alexander-von-Humboldt Foundation of Germany(GroupLinkage Program)。
文摘Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation.
基金This work was financially supported by Xuzhou science and technology plan project of China(No.KC21294).
文摘Paper-based sensing platform is a point of need analytical toolkit for safety testing.However,the sensitivity,specificity,and simplicity are still challenging.Herein,we report a novel strategy(Au/δ-MnO_(2) hollow nanosphere and 3,3′,5,5′-tetramethylbenzidine(TMB)induced test strips for signal-on detection)that can be utilized for hexavalent chromium(Cr^(6+))detection.Interestingly,Cr^(6+)(CrO_(4)^(2−)) as a smart switch can remarkably enhance the oxidase-like activity of Au/δ-MnO_(2) hollow nanosphere.The presence of Cr^(6+) can regulate the surface electronic redistribution of Au/δ-MnO_(2) and adjust the geometric configuration,which leads to the improvement in oxidase-like activity of Au/δ-MnO_(2).As a proof-of-concept application,a visual paper-based sensing platform of Cr^(6+) along with quantitative analysis by the test strips was successfully constructed.This paper-based sensing platform exhibits a linear range with excellent selectivity for other interfering substances and lower limit of detection of 0.09μmol·L^(−1),providing a promising toolkit at-home Cr^(6+) measurement and environmental monitoring.
基金financially supported by the National Natural Science Foundation of China(22168019 and 52074141)the Major Science and Technology Projects in Yunnan Province(202202AB080014)+1 种基金The authors are grateful to the National Natural Science Foundation of Chinathe Major Science and Technology Projects in Yunnan Province for their support.
文摘Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode.
基金financed by the National Natural Science Foundation of China(No.22202169)Xuzhou Science and Technology Plan Project of China(No.KC21294)。
文摘Catalysts can significantly promote the reaction dynamics and are therefore considered crucial components for achieving high electrochemical energy conversion efficiency.However,the active sites of the catalysts,particularly for nano-level and atomic-level catalysts commonly undergo reconstruction under practical applications.Therefore,obtaining an in-depth and systematic understanding on the real active sites through in situ/operando characterization techniques is a prerequisite for establishing the structureperformance relationship and guiding the future design of more efficient electrocatalysts.Herein,we summarize the recent progress of in situ/operando characterization techniques for identifying the nature of active sites of electrocatalysts when used in electrocatalytic energy conversion reaction.Specifically,our focus lies in the fundamental principles of various in situ/operando characterization techniques,with particular emphasis on their applications for electrocatalytic reactions.Beyond that,the challenges and perspective insights are also added in the final section to highlight the future direction of this important field.