AIM To assess the efficacy and safety of a Chinese herbal medicine (CHM), Xiangsha Liujunzi granules, in the treatment of patients with functional dyspepsia (FD). METHODS We performed a randomized, double-blind, place...AIM To assess the efficacy and safety of a Chinese herbal medicine (CHM), Xiangsha Liujunzi granules, in the treatment of patients with functional dyspepsia (FD). METHODS We performed a randomized, double-blind, placebo-controlled trial with patients from three centers. Two hundred and sixteen subjects diagnosed with FD according to ROME. criteria and confirmed by upper gastrointestinal endoscopy and spleen-deficiency and Qi-stagnation syndrome were selected to receive Xiangsha Liujunzi granules or placebo for 4 wk in a 2: 1 ratio by blocked randomization. The subjects also received follow-up after the 4-wk intervention. Herbal or placebo granules were dissolved in 300 mL of water. Participants in both groups were administered 130 mL (45 degrees C) three times a day. Participants were evaluated prior to and following 4 wk of the intervention in terms of changes in the postprandial discomfort severity scale (PDSS) score, clinical global impression (CGI) scale score, hospital anxiety and depression scale (HADS) score, traditional Chinese medicine symptoms score (SS), scores of various domains of the 36-item short form health survey (SF-36), gastric emptying (GE) and any observed adverse effects. RESULTS Compared with the placebo group, patients in the CHM group showed significant improvements in the scores of PDSS, HADS, SS, SF-36 and CGI scale (P < 0.05 or P < 0.01). They also showed the amelioration in the GE rates of the proximal stomach and distal stomach (P < 0.05 or P < 0.01). CONCLUSION Xiangsha Liujunzi granules offered significant symptomatic improvement in patients with FD.展开更多
BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models ...BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.展开更多
Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effe...Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries.Here,we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a“catcher”to arrest active molecules(bound water molecules).The stable solvation structure of[Zn(H_(2)O)_(6)]^(2+)is capable of maintaining and completely inhibiting free water molecules.When[Zn(H_(2)O)_(6)]^(2+)is partially desolvated in the Helmholtz outer layer,the separated active molecules will be arrested by the“catcher”formed by the strong hydrogen bond N-H bond,ensuring the stable desolvation of Zn^(2+).The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm^(-2),Zn||V_(6)O_(13)full battery achieved a capacity retention rate of 99.2%after 10,000 cycles at 10 A g^(-1).This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.展开更多
Eukaryotic cells contain the endoplasmic reticulum(ER),a prevalent and intricate membranous structural system.During the development of inflammatory bowel disease(IBD),the stress on the ER and the start of the unfolde...Eukaryotic cells contain the endoplasmic reticulum(ER),a prevalent and intricate membranous structural system.During the development of inflammatory bowel disease(IBD),the stress on the ER and the start of the unfolded protein response are very important.Some chemicals,including 4μ8C,small molecule agonists of X-box binding protein 1,and ISRIB,work on the inositol-requiring enzyme 1,turn on transcription factor 6,and activate protein kinase RNA-like ER kinase path-ways.This may help ease the symptoms of IBD.Researchers investigating the gut microbiota have discovered a correlation between ER stress and it.This suggests that changing the gut microbiota could help make new medicines for IBD.This study looks at how ER stress works and how it contributes to the emergence of IBD.It also talks about its possible clinical importance as a therapeutic target and looks into new ways to treat this condition.展开更多
Addressing the kinetic limitations of oxygen evolution reaction(OER)is paramount for advancing rechargeable Zn-air batteries,thus it is extremely urgent to drive the development of effective and affordable electrocata...Addressing the kinetic limitations of oxygen evolution reaction(OER)is paramount for advancing rechargeable Zn-air batteries,thus it is extremely urgent to drive the development of effective and affordable electrocatalysts.This work constructs the interfacial structure of cobalt-iron alloys@phosphates(denoted as CoFe/CoFePO)as OER catalyst through a two-step approach using water-bath and hydrothermal methods,which demonstrated significant OER activity in alkaline media,requiring a low overpotential of 271 mV to achieve 10 mA cm^(−2) and exhibiting a competitive Tafel slope of 65 mV dec^(-1),alongside sustained operational stability.The enhanced performance can be attributed to the improved electrical conductivity due to the participation of CoFe alloys and the increased number of active sites through partial phosphorylation,which synergistically enhances charge transfer processes and accelerates OER kinetics.Moreover,dynamic structural evolution during OER process was thoroughly probed,and the results show that alloys@phosphates gradually evolve into phosphate radicalmodified CoFe hydroxyoxides that act as the actual active phase.Highlighting its practical applicability,the integration of prepared catalyst into zinc-air batteries leads to markedly improved performance,thereby offering promising new strategic directions for the development of next-generation OER electrocatalysts.展开更多
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disease with a significant impact on patients’ quality of life and a high socioeconomic burden. And the understanding of IBS has changed since the r...Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disease with a significant impact on patients’ quality of life and a high socioeconomic burden. And the understanding of IBS has changed since the release of the Rome Ⅳ diagnosis in 2016. With the upcoming Rome Ⅴ revision, it is necessary to review the results of IBS research in recent years. In this review of IBS, we can highlight future concerns by reviewing the results of IBS research on epidemiology, overlap disorders, pathophysiology, and treatment over the past decade and summarizing the latest research.展开更多
Finding and designing cathode oxygen reduction reaction(ORR) catalysts with high activity and stability in acidic electrolyte is essential for the large-scale application of fuel cells and metal-air batteries.Pt-based...Finding and designing cathode oxygen reduction reaction(ORR) catalysts with high activity and stability in acidic electrolyte is essential for the large-scale application of fuel cells and metal-air batteries.Pt-based alloys have emerged as potential electrocatalysts for the oxygen reduction reaction.Herein,we adapted a simple pyrolytic reduction method to grow FePt nanoalloys on hollow mesoporous carbon supports.Benefiting from the ultra-high specific surface of the hollow mesoporous carbon,the in situ formed FePt NPs were homogenously deposited on the carbon supports with size smaller than5 nm.The optimized FePt-HMCS showed a remarkably increased mass activity(MA) of 0.582 A·mg^(-1)_(Pt) at 0.75 V in ORR,being 6.3 times higher than that of commercial Pt/C(0.093 A·mg^(-1)_(Pt)).Meanwhile,the FePt NPs showed negligible decay in mass activity with 21 mV of negative shift in the half-wave potential after 5000 electrochemical cycles,which is more stable than that of commercial Pt/C(6.6% decay in MA with 30 mV of negative shift).The study demonstrated a simple strategy for controlling the alloy size with enhanced metal-support interactions to boost their promising application in fuel cells.展开更多
In this work,tunable white up-conversion luminescence was achieved in the Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) codoped Na_(3)La(VO_(4))_(2) phosphors under 980 nm excitation.The emissions of three primary colors are mainly...In this work,tunable white up-conversion luminescence was achieved in the Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) codoped Na_(3)La(VO_(4))_(2) phosphors under 980 nm excitation.The emissions of three primary colors are mainly attributed to the ~2H_(11/2)/~4S_(3/2)→~4I_(15/2) transitions of Er^(3+),~1G_(4)→~3H_6 transition of Tm^(3+),and_5F_5→~5I_8 transition of Ho^(3+).White luminescence characteristics and mechanisms of up-conversion system were investigated in detail.In addition,the temperature sensing behaviors of multiple levels emission combinations for Na_(3)La(VO_(4))_(2):Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) were analyzed by employing thermally coupled and non-thermally coupled energy levels.Based on the emissions of ~3F_(2,3)/~1G_(4) energy levels,the maximum relative and absolute sensitivities were obtained to be 2.20%/K and 0.279 K^(-1).The design of up-conversion luminescence materials with high-quality white luminescence and excellent sensitivity performance is critical in the field of optical applications.展开更多
AIM: To investigate the expression of Popeye domain containing 3 (Popdc3) and its correlation with clinicopathological features and prognosis of gastric cancer.METHODS: The method of immunohistochemistry was used ...AIM: To investigate the expression of Popeye domain containing 3 (Popdc3) and its correlation with clinicopathological features and prognosis of gastric cancer.METHODS: The method of immunohistochemistry was used to investigate the expression of Popdc3 in 306 cases of human gastric cancer and 84 noncancerous gastric tissues. Simultaneously, the relationship between Popdc3 expression and the survival of the patients was retrospectively analyzed.RESULTS: Popdc3 was detected in 72 (85.71%) of 84 human nontumor mucosa. High expression of Popdc3protein was detected in 78 (25.49%) of 306 human gastric cancer cases, and low expression was detected in 228 (74.51%). Low expression of Popdc3 correlated with depth of invasion (P 〈 0.0001), regional lymph nodes (P 〈 0.0001) and distant metastasis (P =0.02), and tumor, nodes, metastasis (TNM) stages (P 〈 0.0001). On multivariate analysis, only the patient's gender, regional lymph node metastasis, distant metastasis, TNM stages, and the expression of Popdc3 were independent prognostic factors in patients with gastric cancer. The Kaplan-Meier plot showed that low Popdc3 expression had a much more significant effect on the survival of those patients with early-stage tumors X^2 = 104.741, P 〈 0.0001), with a 〉 51.9% reduction in the three-year survival compared with high Popdc3 expression. In late stages, the difference was also significant X^2 = 5.930, P = 0.015), with a 32.6% reduction in the three-year survival.CONCLUSION: Reduced expression of Popdc3 may play a significant role in the carcinogenesis and progression of gastric cancer. Popdc3 may be an independent prognostic factor.展开更多
随着人类社会的高速发展,在保证环境不被破坏的情况下维持众多机械和电气设备的正常运转急需清洁的能源方式。氢被认为是在未来最有前景的清洁能源之一。近期,电化学水分解已被认为是获取氢能的最有效的方法之一,它的燃料产物只是无污...随着人类社会的高速发展,在保证环境不被破坏的情况下维持众多机械和电气设备的正常运转急需清洁的能源方式。氢被认为是在未来最有前景的清洁能源之一。近期,电化学水分解已被认为是获取氢能的最有效的方法之一,它的燃料产物只是无污染的水;然而,迟缓的析氧反应严重制约了水分解效率,导致驱动水分解的电压相对较高。探求热力学有利的阳极反应以取代缓慢的氧析出和开发高活性双功能型电催化剂用于这种阳极反应和析氢对于实现可应用于工业的节能型产氢至关重要。当前,普遍认为用其他有用的且利于热力学的反应取代析氧反应可以减小分解电压从而实现节能产氢。本文报道了一种用于甲醇氧化和析氢的双功能型嵌入镍纳米粒子的碳棱柱状微米棒电催化剂(命名为镍碳微米棒),该催化剂是由74号金属有机框架结构经碳化处理获得。这种由镍和碳构成的界面材料结构通过原位碳化实现,由于碳的分隔作用,分散的镍纳米颗粒不会轻易团聚,这有利于暴露更多的镍活性位点与电解液相接触,为更快的催化剂和电解液间电荷转移和电化学动力学提供保障。在此阳极的甲醇氧化中,产物分别为二氧化碳和甲酸,两者在1.55 V电压下的法拉第效率分别为36.2%和62.5%;同时该镍碳微米棒催化剂表现出优异的甲醇氧化活性和耐久性(12 h持续性催化,电流仅衰退2.7%)。值得注意的是,该双功能催化剂不仅具有甲醇氧化活性,在室温下含有0.5mol·L^(-1)甲醇的1.0mol·L^(-1)氢氧化钾电解液中的析氢过电位也较低(仅155 m V的过电位即可驱动10 m A·cm^(-2)的电流),保证了产氢效率。更重要的是,采用这种双功能型电极构造的双电极电解槽仅需1.6 V电压即可驱动10 m A·cm^(-2)的电流,与析氧反应作为阳极反应的电解槽相比驱动电压减小了240 mV。展开更多
Fragmented data suggest that bisphenol AF(BPAF),a chemical widely used in a variety of products,might have potential impacts on the hypothalamus.Here,we employed male neonatal mice following maternal exposure to explo...Fragmented data suggest that bisphenol AF(BPAF),a chemical widely used in a variety of products,might have potential impacts on the hypothalamus.Here,we employed male neonatal mice following maternal exposure to explore the effects of low-dose BPAF on hypothalamic development by RNA-sequencing.We found that maternal exposure to approximately 50μg/(kg·day)BPAF from postanal day(PND)0 to PND 15 altered the hypothalamic transcriptome,primarily involving the pathways and genes associated with extracellular matrix(ECM)and intercellular adhesion,neuroendocrine regulation,and neurological processes.Further RNA analysis confirmed the changes in the expression levels of concerned genes.Importantly,we further revealed that low-dose BPAF posed a stimulatory impact on pro-opiomelanocortin(POMC)neurons in the arcuate nucleus of the hypothalamus and induced the browning of inguinal white adipose tissue.All findings indicate that developmental exposure to low-dose BPAF could interfere with hypothalamic development and thereby lead to alterations in the metabolism.Interestingly,5000μg/(kg·day)BPAF caused slighter,non-significant or even inverse alterations than the low dose of 50μg/(kg·day),displaying a dose-independent effect.Further observations suggest that the the dose-independent effects of BPAF might be associated with oxidative stress and inflammatory responses caused by the high dose.Overall,our study highlights a risk of low-dose BPAF to human neuroendocrine regulation and metabolism.展开更多
Anisotropic SmCo5/Co nanocomposite powders have been prepared by electroless Co deposition on commercial SmCo5 powders with hydrazine as reducer. The Co particles are mainly in the range of 8–27 nm and form dense/con...Anisotropic SmCo5/Co nanocomposite powders have been prepared by electroless Co deposition on commercial SmCo5 powders with hydrazine as reducer. The Co particles are mainly in the range of 8–27 nm and form dense/continuous soft magnetic coatings on the surface of SmCo5 powders. Exchange coupling happened between the coated Co soft magnetic particles and the SmCo5 hard phase. As a result, SmCo5/Co nanocomposite powders with remanence of73.58 emu/g and energy product of 13.74 MGOe were obtained in the optimum condition, as compared with those of70.52 emu/g and 13.40 MGOe for uncoated SmCo5 powders. The effects of Co adding amount on Co particle size, coating morphology, and magnetic properties of SmCo5/Co products were investigated.展开更多
基金Supported by the Major State Basic Research Development Program of China(973 Program)No.2013CB531703+1 种基金National Nature Science Foundation of China,No.81503567 and No.81673853the China Postdoctoral Science Foundation,No.2015M1227 and No.2016T90195
文摘AIM To assess the efficacy and safety of a Chinese herbal medicine (CHM), Xiangsha Liujunzi granules, in the treatment of patients with functional dyspepsia (FD). METHODS We performed a randomized, double-blind, placebo-controlled trial with patients from three centers. Two hundred and sixteen subjects diagnosed with FD according to ROME. criteria and confirmed by upper gastrointestinal endoscopy and spleen-deficiency and Qi-stagnation syndrome were selected to receive Xiangsha Liujunzi granules or placebo for 4 wk in a 2: 1 ratio by blocked randomization. The subjects also received follow-up after the 4-wk intervention. Herbal or placebo granules were dissolved in 300 mL of water. Participants in both groups were administered 130 mL (45 degrees C) three times a day. Participants were evaluated prior to and following 4 wk of the intervention in terms of changes in the postprandial discomfort severity scale (PDSS) score, clinical global impression (CGI) scale score, hospital anxiety and depression scale (HADS) score, traditional Chinese medicine symptoms score (SS), scores of various domains of the 36-item short form health survey (SF-36), gastric emptying (GE) and any observed adverse effects. RESULTS Compared with the placebo group, patients in the CHM group showed significant improvements in the scores of PDSS, HADS, SS, SF-36 and CGI scale (P < 0.05 or P < 0.01). They also showed the amelioration in the GE rates of the proximal stomach and distal stomach (P < 0.05 or P < 0.01). CONCLUSION Xiangsha Liujunzi granules offered significant symptomatic improvement in patients with FD.
基金Supported by the National Key Specialty of Traditional Chinese Medicine(Spleen and Stomach Diseases),No.0500004National Natural Science Foundation of China,No.82205104 and No.82104850+1 种基金Hospital Capability Enhancement Project of Xiyuan Hospital,CACMS,No.XYZX0303-07the Fundamental Research Funds for the Central Public Welfare Research Institutes,Excellent Young Scientists Training Program of China Academy of Chinese Medical Sciences,No.ZZ16-YQ-002.
文摘BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.
基金supported by the National Natural Science Foundation of China(No.52272198 and 52002122)the Project funded by China Postdoctoral Science Foundation(No.2021M690947).
文摘Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries.Here,we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a“catcher”to arrest active molecules(bound water molecules).The stable solvation structure of[Zn(H_(2)O)_(6)]^(2+)is capable of maintaining and completely inhibiting free water molecules.When[Zn(H_(2)O)_(6)]^(2+)is partially desolvated in the Helmholtz outer layer,the separated active molecules will be arrested by the“catcher”formed by the strong hydrogen bond N-H bond,ensuring the stable desolvation of Zn^(2+).The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm^(-2),Zn||V_(6)O_(13)full battery achieved a capacity retention rate of 99.2%after 10,000 cycles at 10 A g^(-1).This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.
基金Supported by the National Natural Science Foundation of China,No.81873297the Fundamental Research Funds for the Central Public Welfare Research Institutes,No.ZZ13-YQ-006+1 种基金China Academy of Chinese Medical Sciences Innovation Fund,No.CI2021A01003the Hospital Capability Enhancement Project of Xiyuan Hospital,China Academy of Chinese Medical Sciences,No.XYZX0303-07.
文摘Eukaryotic cells contain the endoplasmic reticulum(ER),a prevalent and intricate membranous structural system.During the development of inflammatory bowel disease(IBD),the stress on the ER and the start of the unfolded protein response are very important.Some chemicals,including 4μ8C,small molecule agonists of X-box binding protein 1,and ISRIB,work on the inositol-requiring enzyme 1,turn on transcription factor 6,and activate protein kinase RNA-like ER kinase path-ways.This may help ease the symptoms of IBD.Researchers investigating the gut microbiota have discovered a correlation between ER stress and it.This suggests that changing the gut microbiota could help make new medicines for IBD.This study looks at how ER stress works and how it contributes to the emergence of IBD.It also talks about its possible clinical importance as a therapeutic target and looks into new ways to treat this condition.
基金supported by the National Natural Science Foundation of China(No.52002122).
文摘Addressing the kinetic limitations of oxygen evolution reaction(OER)is paramount for advancing rechargeable Zn-air batteries,thus it is extremely urgent to drive the development of effective and affordable electrocatalysts.This work constructs the interfacial structure of cobalt-iron alloys@phosphates(denoted as CoFe/CoFePO)as OER catalyst through a two-step approach using water-bath and hydrothermal methods,which demonstrated significant OER activity in alkaline media,requiring a low overpotential of 271 mV to achieve 10 mA cm^(−2) and exhibiting a competitive Tafel slope of 65 mV dec^(-1),alongside sustained operational stability.The enhanced performance can be attributed to the improved electrical conductivity due to the participation of CoFe alloys and the increased number of active sites through partial phosphorylation,which synergistically enhances charge transfer processes and accelerates OER kinetics.Moreover,dynamic structural evolution during OER process was thoroughly probed,and the results show that alloys@phosphates gradually evolve into phosphate radicalmodified CoFe hydroxyoxides that act as the actual active phase.Highlighting its practical applicability,the integration of prepared catalyst into zinc-air batteries leads to markedly improved performance,thereby offering promising new strategic directions for the development of next-generation OER electrocatalysts.
基金National Natural Science Foundation of China,No.81873297the Fundamental Research Funds for the Central Public Welfare Research Institutes,China,No.ZZ13-YQ-006Innovation Fund of Chinese Academy of Chinese Medical Sciences,China,No.CI2021A01003.
文摘Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disease with a significant impact on patients’ quality of life and a high socioeconomic burden. And the understanding of IBS has changed since the release of the Rome Ⅳ diagnosis in 2016. With the upcoming Rome Ⅴ revision, it is necessary to review the results of IBS research in recent years. In this review of IBS, we can highlight future concerns by reviewing the results of IBS research on epidemiology, overlap disorders, pathophysiology, and treatment over the past decade and summarizing the latest research.
基金financially supported by the National Natural Science Foundation of China (No.22174133)。
文摘Finding and designing cathode oxygen reduction reaction(ORR) catalysts with high activity and stability in acidic electrolyte is essential for the large-scale application of fuel cells and metal-air batteries.Pt-based alloys have emerged as potential electrocatalysts for the oxygen reduction reaction.Herein,we adapted a simple pyrolytic reduction method to grow FePt nanoalloys on hollow mesoporous carbon supports.Benefiting from the ultra-high specific surface of the hollow mesoporous carbon,the in situ formed FePt NPs were homogenously deposited on the carbon supports with size smaller than5 nm.The optimized FePt-HMCS showed a remarkably increased mass activity(MA) of 0.582 A·mg^(-1)_(Pt) at 0.75 V in ORR,being 6.3 times higher than that of commercial Pt/C(0.093 A·mg^(-1)_(Pt)).Meanwhile,the FePt NPs showed negligible decay in mass activity with 21 mV of negative shift in the half-wave potential after 5000 electrochemical cycles,which is more stable than that of commercial Pt/C(6.6% decay in MA with 30 mV of negative shift).The study demonstrated a simple strategy for controlling the alloy size with enhanced metal-support interactions to boost their promising application in fuel cells.
基金Project supported by the National Natural Science Foundation of China (11904046,11974069,11504039)。
文摘In this work,tunable white up-conversion luminescence was achieved in the Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) codoped Na_(3)La(VO_(4))_(2) phosphors under 980 nm excitation.The emissions of three primary colors are mainly attributed to the ~2H_(11/2)/~4S_(3/2)→~4I_(15/2) transitions of Er^(3+),~1G_(4)→~3H_6 transition of Tm^(3+),and_5F_5→~5I_8 transition of Ho^(3+).White luminescence characteristics and mechanisms of up-conversion system were investigated in detail.In addition,the temperature sensing behaviors of multiple levels emission combinations for Na_(3)La(VO_(4))_(2):Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) were analyzed by employing thermally coupled and non-thermally coupled energy levels.Based on the emissions of ~3F_(2,3)/~1G_(4) energy levels,the maximum relative and absolute sensitivities were obtained to be 2.20%/K and 0.279 K^(-1).The design of up-conversion luminescence materials with high-quality white luminescence and excellent sensitivity performance is critical in the field of optical applications.
基金Supported by Health Technology Fund of Yunnan Province, China,No.2010NS066
文摘AIM: To investigate the expression of Popeye domain containing 3 (Popdc3) and its correlation with clinicopathological features and prognosis of gastric cancer.METHODS: The method of immunohistochemistry was used to investigate the expression of Popdc3 in 306 cases of human gastric cancer and 84 noncancerous gastric tissues. Simultaneously, the relationship between Popdc3 expression and the survival of the patients was retrospectively analyzed.RESULTS: Popdc3 was detected in 72 (85.71%) of 84 human nontumor mucosa. High expression of Popdc3protein was detected in 78 (25.49%) of 306 human gastric cancer cases, and low expression was detected in 228 (74.51%). Low expression of Popdc3 correlated with depth of invasion (P 〈 0.0001), regional lymph nodes (P 〈 0.0001) and distant metastasis (P =0.02), and tumor, nodes, metastasis (TNM) stages (P 〈 0.0001). On multivariate analysis, only the patient's gender, regional lymph node metastasis, distant metastasis, TNM stages, and the expression of Popdc3 were independent prognostic factors in patients with gastric cancer. The Kaplan-Meier plot showed that low Popdc3 expression had a much more significant effect on the survival of those patients with early-stage tumors X^2 = 104.741, P 〈 0.0001), with a 〉 51.9% reduction in the three-year survival compared with high Popdc3 expression. In late stages, the difference was also significant X^2 = 5.930, P = 0.015), with a 32.6% reduction in the three-year survival.CONCLUSION: Reduced expression of Popdc3 may play a significant role in the carcinogenesis and progression of gastric cancer. Popdc3 may be an independent prognostic factor.
文摘随着人类社会的高速发展,在保证环境不被破坏的情况下维持众多机械和电气设备的正常运转急需清洁的能源方式。氢被认为是在未来最有前景的清洁能源之一。近期,电化学水分解已被认为是获取氢能的最有效的方法之一,它的燃料产物只是无污染的水;然而,迟缓的析氧反应严重制约了水分解效率,导致驱动水分解的电压相对较高。探求热力学有利的阳极反应以取代缓慢的氧析出和开发高活性双功能型电催化剂用于这种阳极反应和析氢对于实现可应用于工业的节能型产氢至关重要。当前,普遍认为用其他有用的且利于热力学的反应取代析氧反应可以减小分解电压从而实现节能产氢。本文报道了一种用于甲醇氧化和析氢的双功能型嵌入镍纳米粒子的碳棱柱状微米棒电催化剂(命名为镍碳微米棒),该催化剂是由74号金属有机框架结构经碳化处理获得。这种由镍和碳构成的界面材料结构通过原位碳化实现,由于碳的分隔作用,分散的镍纳米颗粒不会轻易团聚,这有利于暴露更多的镍活性位点与电解液相接触,为更快的催化剂和电解液间电荷转移和电化学动力学提供保障。在此阳极的甲醇氧化中,产物分别为二氧化碳和甲酸,两者在1.55 V电压下的法拉第效率分别为36.2%和62.5%;同时该镍碳微米棒催化剂表现出优异的甲醇氧化活性和耐久性(12 h持续性催化,电流仅衰退2.7%)。值得注意的是,该双功能催化剂不仅具有甲醇氧化活性,在室温下含有0.5mol·L^(-1)甲醇的1.0mol·L^(-1)氢氧化钾电解液中的析氢过电位也较低(仅155 m V的过电位即可驱动10 m A·cm^(-2)的电流),保证了产氢效率。更重要的是,采用这种双功能型电极构造的双电极电解槽仅需1.6 V电压即可驱动10 m A·cm^(-2)的电流,与析氧反应作为阳极反应的电解槽相比驱动电压减小了240 mV。
基金supported by the National Natural Science Foundation of China(No.21677166)the National Key Research and Development Program of China(No.2018YFA0901103)。
文摘Fragmented data suggest that bisphenol AF(BPAF),a chemical widely used in a variety of products,might have potential impacts on the hypothalamus.Here,we employed male neonatal mice following maternal exposure to explore the effects of low-dose BPAF on hypothalamic development by RNA-sequencing.We found that maternal exposure to approximately 50μg/(kg·day)BPAF from postanal day(PND)0 to PND 15 altered the hypothalamic transcriptome,primarily involving the pathways and genes associated with extracellular matrix(ECM)and intercellular adhesion,neuroendocrine regulation,and neurological processes.Further RNA analysis confirmed the changes in the expression levels of concerned genes.Importantly,we further revealed that low-dose BPAF posed a stimulatory impact on pro-opiomelanocortin(POMC)neurons in the arcuate nucleus of the hypothalamus and induced the browning of inguinal white adipose tissue.All findings indicate that developmental exposure to low-dose BPAF could interfere with hypothalamic development and thereby lead to alterations in the metabolism.Interestingly,5000μg/(kg·day)BPAF caused slighter,non-significant or even inverse alterations than the low dose of 50μg/(kg·day),displaying a dose-independent effect.Further observations suggest that the the dose-independent effects of BPAF might be associated with oxidative stress and inflammatory responses caused by the high dose.Overall,our study highlights a risk of low-dose BPAF to human neuroendocrine regulation and metabolism.
基金financially supported by the National Natural Science Foundation of China under Grant No. 51422106the National Basic Research Program of China under Grant No. 2014CB643702+3 种基金the Ningbo Natural Science Foundation of China under Grant No. 2016A610249the Scientific and Technological Project of Zhejiang Province under Grant No. 2013TD08the Ningbo City Scientific and Technological Project under Grant No. 2012B81001the China Postdoctoral Science Foundation under Grant No. 2016M601989 for financial support
文摘Anisotropic SmCo5/Co nanocomposite powders have been prepared by electroless Co deposition on commercial SmCo5 powders with hydrazine as reducer. The Co particles are mainly in the range of 8–27 nm and form dense/continuous soft magnetic coatings on the surface of SmCo5 powders. Exchange coupling happened between the coated Co soft magnetic particles and the SmCo5 hard phase. As a result, SmCo5/Co nanocomposite powders with remanence of73.58 emu/g and energy product of 13.74 MGOe were obtained in the optimum condition, as compared with those of70.52 emu/g and 13.40 MGOe for uncoated SmCo5 powders. The effects of Co adding amount on Co particle size, coating morphology, and magnetic properties of SmCo5/Co products were investigated.