In this paper, a nonlinear hemivariational inequality of second order with a forcing term of subcritical growth is studied. Using techniques from multivalued analysis and the theory of nonlinear operators of monotone ...In this paper, a nonlinear hemivariational inequality of second order with a forcing term of subcritical growth is studied. Using techniques from multivalued analysis and the theory of nonlinear operators of monotone type, an existence theorem for the Dirichlet boundary value problem is proved.展开更多
We consider a parametric Dirichlet problem driven by the p-Laplacian with a Caratheodory reaction of equidiffusive type. Our hypotheses incorporate as a special case the equidiffusive p-logistic equation. We show that...We consider a parametric Dirichlet problem driven by the p-Laplacian with a Caratheodory reaction of equidiffusive type. Our hypotheses incorporate as a special case the equidiffusive p-logistic equation. We show that if λ1 〉 0 is the principal eigenvalue of the Dirichlet negative p-Laplacian and )λ 〉 λ1 (/k being the parameter), the problem has a unique positive solution, while for )λ ∈ (0, λ1], the problem has no positive solution.展开更多
We study the periodic problem for differential inclusions in R^N.First we look for extremal periodicsolutions.Using techniques from multivalued analysis and a fixed point argument we establish an existencetheorem unde...We study the periodic problem for differential inclusions in R^N.First we look for extremal periodicsolutions.Using techniques from multivalued analysis and a fixed point argument we establish an existencetheorem under some general hypotheses.We also consider the“nonconvex periodic problem”under lowersemicontinuity hypotheses,and the“convex periodic problem”under general upper semicontinuity hypotheseson the multivalued vector field.For both problems,we prove existence theorems under very general hypotheses.Our approach extends existing results in the literature and appear to be the most general results on the nonconvexperiodic problem.展开更多
文摘In this paper, a nonlinear hemivariational inequality of second order with a forcing term of subcritical growth is studied. Using techniques from multivalued analysis and the theory of nonlinear operators of monotone type, an existence theorem for the Dirichlet boundary value problem is proved.
基金supported by the Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme under Grant Agreement No.295118the National Science Center of Poland under grant No.N N201 604640+1 种基金the International Project co-financed by the Ministry of Science and Higher Education of Republic of Poland under grant No.W111/7.PR/2012the National Science Center of Poland under Maestro Advanced Project No.DEC2012/06/A/ST1/00262
文摘We consider a parametric Dirichlet problem driven by the p-Laplacian with a Caratheodory reaction of equidiffusive type. Our hypotheses incorporate as a special case the equidiffusive p-logistic equation. We show that if λ1 〉 0 is the principal eigenvalue of the Dirichlet negative p-Laplacian and )λ 〉 λ1 (/k being the parameter), the problem has a unique positive solution, while for )λ ∈ (0, λ1], the problem has no positive solution.
文摘We study the periodic problem for differential inclusions in R^N.First we look for extremal periodicsolutions.Using techniques from multivalued analysis and a fixed point argument we establish an existencetheorem under some general hypotheses.We also consider the“nonconvex periodic problem”under lowersemicontinuity hypotheses,and the“convex periodic problem”under general upper semicontinuity hypotheseson the multivalued vector field.For both problems,we prove existence theorems under very general hypotheses.Our approach extends existing results in the literature and appear to be the most general results on the nonconvexperiodic problem.