期刊文献+

Existence Theorems for Periodic Differential Inclusions in IR^N

Existence Theorems for Periodic Differential Inclusions in IR^N
原文传递
导出
摘要 We study the periodic problem for differential inclusions in R^N.First we look for extremal periodicsolutions.Using techniques from multivalued analysis and a fixed point argument we establish an existencetheorem under some general hypotheses.We also consider the“nonconvex periodic problem”under lowersemicontinuity hypotheses,and the“convex periodic problem”under general upper semicontinuity hypotheseson the multivalued vector field.For both problems,we prove existence theorems under very general hypotheses.Our approach extends existing results in the literature and appear to be the most general results on the nonconvexperiodic problem. We study the periodic problem for differential inclusions in R^N.First we look for extremal periodicsolutions.Using techniques from multivalued analysis and a fixed point argument we establish an existencetheorem under some general hypotheses.We also consider the“nonconvex periodic problem”under lowersemicontinuity hypotheses,and the“convex periodic problem”under general upper semicontinuity hypotheseson the multivalued vector field.For both problems,we prove existence theorems under very general hypotheses.Our approach extends existing results in the literature and appear to be the most general results on the nonconvexperiodic problem.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2004年第2期179-190,共12页 应用数学学报(英文版)
关键词 Differential inclusion MULTIFUNCTION upper and lower semicontinuity extremal periodic solution Schauder fixed point theorem property u weak norm Hartman condition Differential inclusion multifunction upper and lower semicontinuity extremal periodic solution Schauder fixed point theorem property u weak norm Hartman condition
  • 相关文献

参考文献12

  • 1De Blasi, F.S., G6rniewicz, L., Pianigiani, G. Topological degree and periodic solutions of differential inclusions. Nonlin. Anal., 37:217-245 (1999).
  • 2De Blasi, F.S., Pianigiani, G. Non-convex vaiued differential inclusions in banach spaces. J. Math. Anal.Appl., 157:469-494 (1991).
  • 3Denkowski, Z., Mig6rski, S., Papageorgiou, N.S. An introduction to nonlinear analysis: Theory. Kluwer,Plenum, New York, 2003.
  • 4Halidias, N., Papageorgiou, N.S. Existence and relaxation results for nonlinear second order multivalued boundary value problems in RN. J. Diff. Eqns., 147:123-154 (1998).
  • 5Hu, S., Kandilalkis, D., Papageorgiou, N.S. Periodic solutions for nonconvex differential inclusions. Proc.AMS. 127:89-94 (1999).
  • 6Hu, S, Papageorgiou, N.S. On the existence of periodic solutions for nonconvex valued differential inclusions in R^N. Proc. AMS, 123:3043-3050 (1995).
  • 7Hu, S., Papageorgiou, N.S. Handbook of multivalued analysis, Volume Ⅰ: Theory. Kluwer, Dordrecht, The Netherlands, 1997.
  • 8Hue S. Papageorgiou, N.S. Handbook of multivalued analysis, Volume Ⅱ: Applications. Kluwer, Dordrecht,The Netherlands, 2000.
  • 9Lasry, J.M., Roberts R. Degrd topologique pour certains couples de fonctions et applications aux equations differentielles multivoques. CRAS, Paris, 283:163-166 (1976).
  • 10Li, G., Xue, X. On the existence of periodic solutions for differential inclusions. J. Math. Anal. Appl.,276:168-183 (2002).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部