Point-of-care nucleic acid testing(POCNAT) has played an important role in the outbreak of infectious diseases(e.g., COVID-19) over recent years. POCNAT aims to realize the rapid, simple and automatic detection of nuc...Point-of-care nucleic acid testing(POCNAT) has played an important role in the outbreak of infectious diseases(e.g., COVID-19) over recent years. POCNAT aims to realize the rapid, simple and automatic detection of nucleic acid. Thanks to the development of manufacturing technology, electronic information technology, artificial intelligence technology, and biological information technology in recent years, the development of the POCNAT device has led to significant advancement. Instead of the normal nucleic acid detection methods used in the laboratory, some novel experimental carriers have been applied, such as chips, cartridges and papers. The application of these experimental carriers has realized the automation and integration of nucleic acid detection. The entire process of nucleic acid detection is normally divided into three steps(nucleic acid extraction, target amplification and signal detection). All of the reagents required by the process can be pre-stored on these experimental carriers, without unnecessary manual operation. Furthermore, all of the processes are carried out in this experimental carrier, with the assistance of a specific control device. Although they are complicated to manufacture and precise in design,their application provides a significant step forwards in nucleic acid detection and realizes the integration of nucleic acid detection. This technology has great potential in the field of point-of-care molecular diagnostics in the future. This paper focuses on the relevant content of these experimental carriers.展开更多
Copper matrix composites prepared via traditional methods face mechanical property and electrical conductivity trade-off problems.In this study,TiB_(2)/Cu−Cu heterogeneous laminated composites with submicron lamellar ...Copper matrix composites prepared via traditional methods face mechanical property and electrical conductivity trade-off problems.In this study,TiB_(2)/Cu−Cu heterogeneous laminated composites with submicron lamellar thicknesses were prepared via flake powder metallurgy(FPM)using gas-atomized in situ composite powders as raw material.By thermal mismatch strengthening,and the geometrically necessary dislocations(GNDs)generated by mechanically incompatible deformation between adjacent heterogeneous lamellae and their interaction with statistically stored dislocations(SSDs),the as-prepared TiB_(2)/Cu−Cu submicron laminated composites(SLCs)exhibit significantly enhanced mechanical properties.At the same time,the interaction and propagation of multimode cracks provide extrinsic toughening for SLCs.The pure Cu lamellae with low density grain boundaries and dislocations and no TiB_(2)particles provide a channel with little electron scattering for the rapid transport of carriers,thereby ensuring high electrical conductivity.展开更多
CO_(2)-enhanced oil recovery(CO_(2)-EOR)is an economically viable carbon capture,utilization,and storage(CCUS)technique that is widely practiced and greatly contributes to the achievement of carbon-neutral cities.Howe...CO_(2)-enhanced oil recovery(CO_(2)-EOR)is an economically viable carbon capture,utilization,and storage(CCUS)technique that is widely practiced and greatly contributes to the achievement of carbon-neutral cities.However,studies on CO_(2)-EOR source-sink matching involving different emission sources,different carbon capture rates,and stepwise CO_(2)pipeline construction are scarce.Considering four types of carbon sources,including coal-fired power,iron and steel,cement,and chemical plants,with different CO_(2)capture rates(85%,90%,95%,and 100%,respectively),and using a five-phased construction plan with a 25-year build-up period,we developed a method for quantifying carbon emissions from different sources,calculating the effective storage of carbon in CO_(2)-EOR and optimizing CO_(2)-EOR source-sink matching to reduce project costs.Using the Subei Basin in the Jiangsu Province,China,as a case study,we calculated the theoretical CO_(2)-EOR storage to be 1.7408×10^(8)t and the effective CO_(2)-EOR storage to be 0.435×10^(8)t.We analyzed the completion rate of transportation pipelines,the number of connected carbon sources,and the mass of CO_(2)stored,as well as the cost-effectiveness and sensitivity.Implementation of CO_(2)-EOR effectively reduced the total cost of source-sink matching in the five-stage 25-year construction approach.The reduction of CO_(2)capture rates had no effect on the value of oil repelling.The capture cost significantly affected the total cost of source-sink matching,and the impacts of the carbon sources on the total cost were in the order coal-fired power>iron and steel>cement>chemical plants.This study provides an innovative tool for evaluating the CO_(2)storage potential of CO_(2)-EOR and provides an important framework for implementing CO_(2)-EOR and planning CCUS projects in the Subei Basin and similar regions.展开更多
To predict the lithium-ion(Li-ion)battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great importance.However,under different operation conditions,Li-io...To predict the lithium-ion(Li-ion)battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great importance.However,under different operation conditions,Li-ion batteries present distinct degradation patterns,and it is challenging to capture negligible capacity fade in early cycles.Despite the data-driven method showing promising performance,insufficient data is still a big issue since the ageing experiments on the batteries are too slow and expensive.In this study,we proposed twin autoencoders integrated into a two-stage method to predict the early cycles'degradation trajectories.The two-stage method can properly predict the degradation from course to fine.The twin autoencoders serve as a feature extractor and a synthetic data generator,respectively.Ultimately,a learning procedure based on the long-short term memory(LSTM)network is designed to hybridize the learning process between the real and synthetic data.The performance of the proposed method is verified on three datasets,and the experimental results show that the proposed method can achieve accurate predictions compared to its competitors.展开更多
Background:Despite advances in surgical treatment,high recurrence after surgery remains a challenge for patients with hepatocellular carcinoma(HCC).This study aimed to investigate the association between compliance to...Background:Despite advances in surgical treatment,high recurrence after surgery remains a challenge for patients with hepatocellular carcinoma(HCC).This study aimed to investigate the association between compliance to regular follow-up and long-term oncological outcomes among patients undergoing curative resection for HCC.Methods:This multicenter study included patients who underwent curative resection for early-stage HCC between January 2012 and December 2021 at 12 liver surgery centers.Patients were stratified into a regular follow-up group(follow-up every 2–3 months for the first 2 years and every 3–6 months thereafter)and an irregular/no follow-up group.Overall survival(OS),time to recurrence(TTR),and post-recurrence survival(PRS)were compared between the two groups.Results:Among 1544 patients,786(50.9%)underwent regular follow-up during postoperative follow-up.The regular follow-up group had better OS(median:113.4 vs.94.5 months,P=0.010)and PRS(median:37.9 vs.16.3 months,P<0.001)than the irregular/no follow-up group,although TTR was comparable(median:61.4 vs.66.2 months,P=0.161).Furthermore,patients in the regular follow-up group had a lower incidence of tumor beyond the Milan criteria at recurrence(41.6%vs.50.4%,P=0.013)and were more likely to receive curative treatments for recurrence(56.1%vs.49.3%,P=0.061).On multivariate analysis,compliance to regular follow-up was an independent factor associated with better OS[hazard ratio(HR)=0.777,95%confidence interval(CI):0.663–0.910,P=0.002]and PRS(HR=0.523,95%CI:0.428–0.638,P<0.001).Conclusions:Compliance to regular follow-up improved OS and PRS after curative resection for HCC,highlighting the importance of postoperative regular follow-up for early detection of recurrence and timely intervention.展开更多
High-performance electromagnetic wave absorption and electromagnetic interference(EMI)shielding materials with multifunctional characters have attracted extensive scientific and technological interest,but they remain ...High-performance electromagnetic wave absorption and electromagnetic interference(EMI)shielding materials with multifunctional characters have attracted extensive scientific and technological interest,but they remain a huge challenge.Here,we reported an electrostatic assembly approach for fabricating 2D/1D/0D construction of Ti_(3)C_(2)Tx/carbon nanotubes/Co nanoparticles(Ti_(3)C_(2)Tx/CNTs/Co)nanocomposites with an excellent electromagnetic wave absorption,EMI shielding efficiency,flexibility,hydrophobicity,and photother-mal conversion performance.As expected,a strong reflection loss of-85.8 dB and an ultrathin thickness of 1.4 mm were achieved.Mean-while,the high EMI shielding efficiency reached 110.1 dB.The excel-lent electromagnetic wave absorption and shielding performances were originated from the charge carriers,electric/magnetic dipole polariza-tion,interfacial polarization,natural resonance,and multiple internal reflections.Moreover,a thin layer of polydimethylsiloxane rendered the hydrophilic hierarchical Ti_(3)C_(2)Tx/CNTs/Co hydrophobic,which can prevent the degradation/oxidation of the MXene in high humidity condition.Interestingly,the Ti_(3)C_(2)Tx/CNTs/Co film exhibited a remark-able photothermal conversion performance with high thermal cycle stability and tenability.Thus,the multifunctional Ti_(3)C_(2)Tx/CNTs/Co nanocomposites possessing a unique blend of outstanding electromagnetic wave absorption and EMI shielding,light-driven heating perfor-mance,and flexible water-resistant features were highly promising for the next-generation intelligent electromagnetic attenuation system.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 61901168, 61971187, 61871180, 61571187, 81902153)Zhuzhou Innovative City Construction Project (No. 2020-020)+2 种基金China Postdoctoral Science Foundation (No. 2018M630498)Hunan Urgency Project (No. 2020SK3005)Education Department Outstanding Young Project of Hunan Province (No. 18B299)。
文摘Point-of-care nucleic acid testing(POCNAT) has played an important role in the outbreak of infectious diseases(e.g., COVID-19) over recent years. POCNAT aims to realize the rapid, simple and automatic detection of nucleic acid. Thanks to the development of manufacturing technology, electronic information technology, artificial intelligence technology, and biological information technology in recent years, the development of the POCNAT device has led to significant advancement. Instead of the normal nucleic acid detection methods used in the laboratory, some novel experimental carriers have been applied, such as chips, cartridges and papers. The application of these experimental carriers has realized the automation and integration of nucleic acid detection. The entire process of nucleic acid detection is normally divided into three steps(nucleic acid extraction, target amplification and signal detection). All of the reagents required by the process can be pre-stored on these experimental carriers, without unnecessary manual operation. Furthermore, all of the processes are carried out in this experimental carrier, with the assistance of a specific control device. Although they are complicated to manufacture and precise in design,their application provides a significant step forwards in nucleic acid detection and realizes the integration of nucleic acid detection. This technology has great potential in the field of point-of-care molecular diagnostics in the future. This paper focuses on the relevant content of these experimental carriers.
基金supported by the National Natural Science Foundation of China(Nos.52127802,52322409,52271137)the Scientific Research Program of Education Department of Shaanxi Province,China(No.22JY050)the Science and Technology Project of Xi’an,China(No.2021SFGX0004).
文摘Copper matrix composites prepared via traditional methods face mechanical property and electrical conductivity trade-off problems.In this study,TiB_(2)/Cu−Cu heterogeneous laminated composites with submicron lamellar thicknesses were prepared via flake powder metallurgy(FPM)using gas-atomized in situ composite powders as raw material.By thermal mismatch strengthening,and the geometrically necessary dislocations(GNDs)generated by mechanically incompatible deformation between adjacent heterogeneous lamellae and their interaction with statistically stored dislocations(SSDs),the as-prepared TiB_(2)/Cu−Cu submicron laminated composites(SLCs)exhibit significantly enhanced mechanical properties.At the same time,the interaction and propagation of multimode cracks provide extrinsic toughening for SLCs.The pure Cu lamellae with low density grain boundaries and dislocations and no TiB_(2)particles provide a channel with little electron scattering for the rapid transport of carriers,thereby ensuring high electrical conductivity.
基金Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20231488National Natural Science Foundation of China,Grant/Award Numbers:52378083,52078481。
文摘CO_(2)-enhanced oil recovery(CO_(2)-EOR)is an economically viable carbon capture,utilization,and storage(CCUS)technique that is widely practiced and greatly contributes to the achievement of carbon-neutral cities.However,studies on CO_(2)-EOR source-sink matching involving different emission sources,different carbon capture rates,and stepwise CO_(2)pipeline construction are scarce.Considering four types of carbon sources,including coal-fired power,iron and steel,cement,and chemical plants,with different CO_(2)capture rates(85%,90%,95%,and 100%,respectively),and using a five-phased construction plan with a 25-year build-up period,we developed a method for quantifying carbon emissions from different sources,calculating the effective storage of carbon in CO_(2)-EOR and optimizing CO_(2)-EOR source-sink matching to reduce project costs.Using the Subei Basin in the Jiangsu Province,China,as a case study,we calculated the theoretical CO_(2)-EOR storage to be 1.7408×10^(8)t and the effective CO_(2)-EOR storage to be 0.435×10^(8)t.We analyzed the completion rate of transportation pipelines,the number of connected carbon sources,and the mass of CO_(2)stored,as well as the cost-effectiveness and sensitivity.Implementation of CO_(2)-EOR effectively reduced the total cost of source-sink matching in the five-stage 25-year construction approach.The reduction of CO_(2)capture rates had no effect on the value of oil repelling.The capture cost significantly affected the total cost of source-sink matching,and the impacts of the carbon sources on the total cost were in the order coal-fired power>iron and steel>cement>chemical plants.This study provides an innovative tool for evaluating the CO_(2)storage potential of CO_(2)-EOR and provides an important framework for implementing CO_(2)-EOR and planning CCUS projects in the Subei Basin and similar regions.
基金financially supported by the National Natural Science Foundation of China under Grant 62372369,52107229,62272383the Key Research and Development Program of Shaanxi Province(2024GX-YBXM-442)Natural Science Basic Research Program of Shaanxi Province(2024JC-YBMS-477)。
文摘To predict the lithium-ion(Li-ion)battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great importance.However,under different operation conditions,Li-ion batteries present distinct degradation patterns,and it is challenging to capture negligible capacity fade in early cycles.Despite the data-driven method showing promising performance,insufficient data is still a big issue since the ageing experiments on the batteries are too slow and expensive.In this study,we proposed twin autoencoders integrated into a two-stage method to predict the early cycles'degradation trajectories.The two-stage method can properly predict the degradation from course to fine.The twin autoencoders serve as a feature extractor and a synthetic data generator,respectively.Ultimately,a learning procedure based on the long-short term memory(LSTM)network is designed to hybridize the learning process between the real and synthetic data.The performance of the proposed method is verified on three datasets,and the experimental results show that the proposed method can achieve accurate predictions compared to its competitors.
基金This study was supported by grants from the National Natural Science Foundation of China(82425049,81972726 and 82273074)Dawn Project Foundation of Shanghai(21SG36)+4 种基金Shanghai Health and Hygiene Discipline Leader Project(2022XD001)Shanghai Out-standing Academic Leader Program(23XD1424900)the Natural Science Foundation of Shanghai(22ZR1477900)Shanghai Science and Technology Committee Rising-Star Program(22QA1411600)the Special Clinical Project of Shanghai Municipal Health Com-mission(20244Y0233)。
文摘Background:Despite advances in surgical treatment,high recurrence after surgery remains a challenge for patients with hepatocellular carcinoma(HCC).This study aimed to investigate the association between compliance to regular follow-up and long-term oncological outcomes among patients undergoing curative resection for HCC.Methods:This multicenter study included patients who underwent curative resection for early-stage HCC between January 2012 and December 2021 at 12 liver surgery centers.Patients were stratified into a regular follow-up group(follow-up every 2–3 months for the first 2 years and every 3–6 months thereafter)and an irregular/no follow-up group.Overall survival(OS),time to recurrence(TTR),and post-recurrence survival(PRS)were compared between the two groups.Results:Among 1544 patients,786(50.9%)underwent regular follow-up during postoperative follow-up.The regular follow-up group had better OS(median:113.4 vs.94.5 months,P=0.010)and PRS(median:37.9 vs.16.3 months,P<0.001)than the irregular/no follow-up group,although TTR was comparable(median:61.4 vs.66.2 months,P=0.161).Furthermore,patients in the regular follow-up group had a lower incidence of tumor beyond the Milan criteria at recurrence(41.6%vs.50.4%,P=0.013)and were more likely to receive curative treatments for recurrence(56.1%vs.49.3%,P=0.061).On multivariate analysis,compliance to regular follow-up was an independent factor associated with better OS[hazard ratio(HR)=0.777,95%confidence interval(CI):0.663–0.910,P=0.002]and PRS(HR=0.523,95%CI:0.428–0.638,P<0.001).Conclusions:Compliance to regular follow-up improved OS and PRS after curative resection for HCC,highlighting the importance of postoperative regular follow-up for early detection of recurrence and timely intervention.
基金supported by the China Postdoctoral Science Foundation(Grant No.2020M671208)National Key Research and Development Program of China(Grant No.2019YFE0122900)+1 种基金National Natural Science Foundation of China(Grant No.51971162,U1933112,51671146)the Program of Shanghai Technology Research Leader(Grant No.18XD1423800)。
文摘High-performance electromagnetic wave absorption and electromagnetic interference(EMI)shielding materials with multifunctional characters have attracted extensive scientific and technological interest,but they remain a huge challenge.Here,we reported an electrostatic assembly approach for fabricating 2D/1D/0D construction of Ti_(3)C_(2)Tx/carbon nanotubes/Co nanoparticles(Ti_(3)C_(2)Tx/CNTs/Co)nanocomposites with an excellent electromagnetic wave absorption,EMI shielding efficiency,flexibility,hydrophobicity,and photother-mal conversion performance.As expected,a strong reflection loss of-85.8 dB and an ultrathin thickness of 1.4 mm were achieved.Mean-while,the high EMI shielding efficiency reached 110.1 dB.The excel-lent electromagnetic wave absorption and shielding performances were originated from the charge carriers,electric/magnetic dipole polariza-tion,interfacial polarization,natural resonance,and multiple internal reflections.Moreover,a thin layer of polydimethylsiloxane rendered the hydrophilic hierarchical Ti_(3)C_(2)Tx/CNTs/Co hydrophobic,which can prevent the degradation/oxidation of the MXene in high humidity condition.Interestingly,the Ti_(3)C_(2)Tx/CNTs/Co film exhibited a remark-able photothermal conversion performance with high thermal cycle stability and tenability.Thus,the multifunctional Ti_(3)C_(2)Tx/CNTs/Co nanocomposites possessing a unique blend of outstanding electromagnetic wave absorption and EMI shielding,light-driven heating perfor-mance,and flexible water-resistant features were highly promising for the next-generation intelligent electromagnetic attenuation system.