Fracture assessment of the cracked structures is essential to avoiding fracture failure.A number of fracture assessment procedures have been proposed for various steel structures.However,the studies about the applicat...Fracture assessment of the cracked structures is essential to avoiding fracture failure.A number of fracture assessment procedures have been proposed for various steel structures.However,the studies about the application of available procedures for titanium alloy structures are scarcely reported.Fracture assessment for the electron beam(EB) welded thick-walled damage tolerant Ti-6Al-4V(TC4-DT) alloy is performed by the fitness-for-service(FFS) FITNET procedure.Uniaxial tensile tests and fracture assessment tests of the base metal and weld metal are carried out to obtain the input information of assessment.The standard options and advanced options of FITNET FFS procedure are used to the fracture assessment of the present material.Moreover,the predicted maximum loads of compact tensile specimen using FITNET FFS procedure are verified with the experimental data of fracture assessment tests.As a result,it is shown that the mechanical properties of weld metal are inhomogeneous along the weld depth.The mismatch ratio M is less than 10% at the weld top and middle,whereas more than 10% at the weld bottom.Failure assessment lines of standard options are close to that of advanced option,which means that the standard options are suitable for fracture assessment of the present welds.The accurate estimation of the maximum loads has been obtained by fracture assessment of standard options with error less than 6%.Furthermore,there are no potential advantages of applying higher options or mismatch options.Thus,the present welded joints can be treated as homogeneous material during the fracture assessment,and standard option 1 can be used to achieve accurate enough results.This research provides the engineering treatment methods for the fracture assessment of titanium alloy and its EB welds.展开更多
Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments.However,there are no limit load solutions exist for the single edge crack weldments in tension(SEC(...Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments.However,there are no limit load solutions exist for the single edge crack weldments in tension(SEC(T)),which is also a typical geometry in fracture analysis.The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses.The real weld configurations are simplified as a strip,and different weld strength mis-matching ratio M,crack depth/width ratio a/W and weld width 2H are in consideration.As a result,it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M,a/W and ligament-to-weld width ratio(W-a)/H.Moreover,useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T).For the EBW joints with SEC(T),the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal,when M changing from 1.6 to 0.6.When M decreasing to 0.4,the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of(W-a)/H.The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T).The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).展开更多
基金supported by Key Program of National Natural Science Foundation of China(Grant No.50935008)
文摘Fracture assessment of the cracked structures is essential to avoiding fracture failure.A number of fracture assessment procedures have been proposed for various steel structures.However,the studies about the application of available procedures for titanium alloy structures are scarcely reported.Fracture assessment for the electron beam(EB) welded thick-walled damage tolerant Ti-6Al-4V(TC4-DT) alloy is performed by the fitness-for-service(FFS) FITNET procedure.Uniaxial tensile tests and fracture assessment tests of the base metal and weld metal are carried out to obtain the input information of assessment.The standard options and advanced options of FITNET FFS procedure are used to the fracture assessment of the present material.Moreover,the predicted maximum loads of compact tensile specimen using FITNET FFS procedure are verified with the experimental data of fracture assessment tests.As a result,it is shown that the mechanical properties of weld metal are inhomogeneous along the weld depth.The mismatch ratio M is less than 10% at the weld top and middle,whereas more than 10% at the weld bottom.Failure assessment lines of standard options are close to that of advanced option,which means that the standard options are suitable for fracture assessment of the present welds.The accurate estimation of the maximum loads has been obtained by fracture assessment of standard options with error less than 6%.Furthermore,there are no potential advantages of applying higher options or mismatch options.Thus,the present welded joints can be treated as homogeneous material during the fracture assessment,and standard option 1 can be used to achieve accurate enough results.This research provides the engineering treatment methods for the fracture assessment of titanium alloy and its EB welds.
基金supported by National Natural Science Foundation of China (Grant No. 50935008)
文摘Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments.However,there are no limit load solutions exist for the single edge crack weldments in tension(SEC(T)),which is also a typical geometry in fracture analysis.The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses.The real weld configurations are simplified as a strip,and different weld strength mis-matching ratio M,crack depth/width ratio a/W and weld width 2H are in consideration.As a result,it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M,a/W and ligament-to-weld width ratio(W-a)/H.Moreover,useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T).For the EBW joints with SEC(T),the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal,when M changing from 1.6 to 0.6.When M decreasing to 0.4,the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of(W-a)/H.The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T).The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).