1.Introduction Multi-principal element alloys(MPEAs),with compositions in the central region of the multicomponent phase diagram,have been dubbed"high-entropy alloys"(HEAs)in recent years[1-11].A more genera...1.Introduction Multi-principal element alloys(MPEAs),with compositions in the central region of the multicomponent phase diagram,have been dubbed"high-entropy alloys"(HEAs)in recent years[1-11].A more general term currently accepted by the community for these MPEAs is complex concentrated alloys or compositionally complex alloys(CCAs)[12].These alloys are usually based on single-phase multi-principal element solid solutions,with no need or possibility to distinguish which species constitutes the solvent and which ones are solutes.This Viewpoint and Perspective article focuses on a salient feature in the internal structure of MPEAs,different from traditional metals and solvent-(dilute)solute solutions.Specifically,the unusual trait to be highlighted for these heavily concentrated solutions is their inherent chemical inhomogeneity on the nanoscale,in terms of the high propensity for compositional fluctuation and local chemical order.展开更多
Successful non-native species can exhibit rapid divergence of key phenotypic traits to facilitate population persistence and further range expansion.Such phenotypic shifts can be sex-dependent as males and females usu...Successful non-native species can exhibit rapid divergence of key phenotypic traits to facilitate population persistence and further range expansion.Such phenotypic shifts can be sex-dependent as males and females usually have distinct reproductive and dispersal modes responding to relevant selective forces.Here,we showed significant phenotypic divergence in a set of fitness-related traits among males but not among females in the introduced oriental fire-bellied toads(Bombina orientalis),which established a non-native population in Beijing after being introduced in 1927.Specifically,compared with the native counterparts,introduced males displayed younger age and reduced body size,but increased hindlimb length and eye size after controlling the age effect.As the toads have male-biased sex ratio and male-biased dispersal during breeding season,the observed shifts may suggest that the male-biased selective forces have induced increased energy allocation to dispersal and foraging,and thus decreased allocation to maintain longevity in males.Overall,our study provides evidence for the modification of fitness-related phenotypic traits in a non-native anuran population compared with native populations and extends our understanding of key trait divergence in established non-native amphibian under sexual-unbalanced selective forces.展开更多
Precipitation at grain boundaries is typically not regarded as an efficient method for strengthening materials since it can induce grain boundary embrittlement, which detrimentally affects ductility. In this research,...Precipitation at grain boundaries is typically not regarded as an efficient method for strengthening materials since it can induce grain boundary embrittlement, which detrimentally affects ductility. In this research, we developed a multi-principal element alloy (MPEA) with the composition Cr_(30)Co_(30)Ni_(30)Al_(5)Ti_(5) (at.%), incorporating both intragranular and intergranular nanoprecipitates. Utilizing multiscale, three-dimensional, and in-situ electron microscopy techniques, coupled with computational simulations, we established that intergranular nanoprecipitation in this material plays a crucial role in enhancing strength and promoting dislocation plasticity. The structure of intergranular nanoprecipitation comprises multiple phases with varying composition and structure. Despite the diversity, the crystal planes conducive to the easy glide of dislocations are well-matched, allowing for the sustained continuity of dislocation slipping across different phase structures. Simultaneously, this structure generates an undulated stress field near grain boundaries, amplifying the strengthening effect and facilitating multiple slip and cross-slip during deformation. Consequently, it promotes the proliferation and storage of dislocations. As a result, our material exhibits a yield strength of approximately 1010 MPa and an ultimate tensile strength of around 1500 MPa, accompanied by a significant fracture elongation of 41 %. Our findings illuminate the potential for harnessing intergranular nanoprecipitation to optimize the strength-ductility trade-off in MPEAs, emphasizing the strategy of leveraging complex compositions for the design of sophisticated functional microstructures.展开更多
Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose a...Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose an Attention Spatio-Temporal predictive Generative Adversarial Network(AST-GAN)model for predicting the temporal and spatial distribution of TCs.The model forecasts the spatial distribution of TC wind speeds for the next 15 hours at 3-hour intervals,emphasizing the cyclone's center,high wind-speed areas,and its asymmetric structure.To effectively capture spatiotemporal feature transfer at different time steps,we employ a channel attention mechanism for feature selection,enhancing model performance and reducing parameter redundancy.We utilized High-Resolution Weather Research and Forecasting(HWRF)data to train our model,allowing it to assimilate a wide range of TC motion patterns.The model is versatile and can be applied to various complex scenarios,such as multiple TCs moving simultaneously or TCs approaching landfall.Our proposed model demonstrates superior forecasting performance,achieving a root-mean-square error(RMSE)of 0.71 m s^(-1)for overall wind speed and 2.74 m s^(-1)for maximum wind speed when benchmarked against ground truth data from HWRF.Furthermore,the model underwent optimization and independent testing using ERA5reanalysis data,showcasing its stability and scalability.After fine-tuning on the ERA5 dataset,the model achieved an RMSE of 1.33 m s^(-1)for wind speed and 1.75 m s^(-1)for maximum wind speed.The AST-GAN model outperforms other state-of-the-art models in RMSE on both the HWRF and ERA5 datasets,maintaining its superior performance and demonstrating its effectiveness for spatiotemporal prediction of TCs.展开更多
Bacterial infections pose a significant threat to human health and entail substantial economic losses.Due to the broad-spectrum antibacterial effect and low susceptibility to drug resistance,photodynamic therapy(PDT),...Bacterial infections pose a significant threat to human health and entail substantial economic losses.Due to the broad-spectrum antibacterial effect and low susceptibility to drug resistance,photodynamic therapy(PDT),a nontraditional antibacterial approach,has garnered a lot of attention.In PDT,the selection of photosensitizer(PS)is crucial because it directly affects the efficiency and safety of the treatment.As a versatile fluorophore,the advantages of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene(BODIPY)used as a PS for antibacterial PDT are mainly reflected in its high quantum yield of singlet oxygen,easy modification,and exceptional photostability.Through strategic chemical modifications of the BODIPY structures,it is possible to enhance their photodynamic antibacterial activity and refine their selectivity for bacterial killing.This review focuses on the application of BODIPY-based PSs for treating bacterial infections.According to the design strategies of photodynamic antibacterial materials incorporating BODIPY,a variety of representative therapeutic agents having emerged in recent years are classified and discussed,aiming to offer insights for future research and development in this field.展开更多
Nitrogen gas pressure sintering was successfully employed to achieve the in-situ formation of Si_(3)N_(4)-bonded MgO-C refractories.The primary objective was to investigate the influence of different gas pressures on ...Nitrogen gas pressure sintering was successfully employed to achieve the in-situ formation of Si_(3)N_(4)-bonded MgO-C refractories.The primary objective was to investigate the influence of different gas pressures on the mechanical properties and microstructure of MgO-C refractories.The results indicate that higher nitrogen pressure promotes the transformation of silicon nitride from theαphase to theβphase.This phase transition positively impacts the mechanical properties of Si_(3)N_(4)-bonded MgO-C refractories,leading to an enhancement in their overall strength.Notably,when the nitrogen pressure was set at 3 MPa,exceptional compressive strength of 109.7 MPa and an elastic modulus of 142.4 GPa were achieved by these prepared refractories.These findings highlight the great potential for utilizing gas pressure sintered Si_(3)N_(4)-MgO-C refractories.展开更多
Peroxymonosulfate(PMS)activation and photocatalysis are effective technologies to remove organic pollutants,but the adsorption effect of the catalyst is usually unheeded in degradation process.Herein,a bifunctional ca...Peroxymonosulfate(PMS)activation and photocatalysis are effective technologies to remove organic pollutants,but the adsorption effect of the catalyst is usually unheeded in degradation process.Herein,a bifunctional catalyst of amorphous MoS_(x)(a-MoS_(x))with 3D layer-by-layer superstructure was synthesized by assembling basic active units[Mo_(3)S_(13)]^(2-)of MoS_(2).The large interlayer spacing and high exposure of active sites render a-MoS_(x)to have excellent synergy of adsorption and photo-assisted PMS activation for tetracycline(TC)degradation.Experiments and DFT calculation show that TC can be efficiently enriched on a-MoS_(x)by pore filling,π-πinteraction,hydrogen bonding and high adsorption energy.Subsequently,PMS can be quickly activated through electron transfer with a-MoS_(x),resulting in high TC degradation efficiency of 96.6%within 20 min.In addition,the synergistic mechanism of adsorption and photo-assisted PMS activation was explored,and the degradation pathway of TC was expounded.This work is inspirational for constructing bifunctional catalysts with superior synergistic adsorption and catalytic capabilities to remove refractory organic pollutants in water.展开更多
BACKGROUND Renal stones ranging 20–40 mm are very common in China.Although no largesample clinical studies have confirmed the clinical efficacy and safety of this method,there is also a lack of comparative data with ...BACKGROUND Renal stones ranging 20–40 mm are very common in China.Although no largesample clinical studies have confirmed the clinical efficacy and safety of this method,there is also a lack of comparative data with traditional treatment.AIM To investigate the clinical efficacy of flexible ureteroscopy(FURS)and percutaneous nephrolithotomy(PCNL)by postoperative stone clearance and changes in soluble vascular cell adhesion molecule 1(sVCAM-1)and kidney injury molecule 1(KIM-1)levels in patients with large kidney stones(>2 cm in diameter).METHODS This single-center observational study was performed at a Chinese hospital between January 1,2021,and October 30,2023.All 250 enrolled patients were diagnosed with large kidney stones(>2 cm)and divided into a FURS group(n=145)and a PCNL group(n=105)by the surgical method.The FURS group was treated with flexible ureteroscopy and the PCNL group was treated with percutaneous nephrolithotomy.The operation time,time to palinesthesia,intraoperative blood loss,drop in hemoglobin,length of hospital stay,stone clearance rate,and complications were recorded in the two groups.Preoperative and postoperative serum sVCAM-1 levels,erythrocyte sedimentation rate(ESR),urine KIM-1 levels,preoperative and postoperative pain visual analog scale(VAS)and Wisconsin Stone Quality of Life Questionnaire(WISQOL)scores were also documented.RESULTS All 250 eligible patients completed the follow-up.There were no significant differences in baseline characteristics between the two groups(P>0.05).The operation time in the FURS group was significantly greater than that in the PCNL group.The time to ambulation,intraoperative blood loss,decrease in hemoglobin,and length of hospital stay were significantly lower in the FURS group than in the PCNL group.The FURS group also had a significantly higher stone clearance rate and a lower incidence of postoperative complications.There was no significant difference in antibiotic use between the groups.Postoperative serum sVCAM-1 levels,urine KIM-1 levels,and VAS scores were lower in the FURS group than in the PCNL group,but postoperative ESR and WISQOL scores were greater in the FURS group than in the PCNL group.CONCLUSION FURS demonstrated superior clinical efficacy in treating large kidney stones(>2 cm in diameter)compared PCNL.It not only improved the postoperative stone clearance rate and reduced complications and recovery time but also positively affected serum SCM-1,ESR,and urine KIM-1 levels,subsequent improvement of patient quality of life.展开更多
Strain gradient is a normal phenomenon around a heterostructural interface in ultrathin film,and it is important to determine its effect on magnetic interactions to understand interfacial coupling.In this work,ultrath...Strain gradient is a normal phenomenon around a heterostructural interface in ultrathin film,and it is important to determine its effect on magnetic interactions to understand interfacial coupling.In this work,ultrathin Pr_(0.67)Sr_(0.33)MnO_(3)(PSMO)films on different substrates are studied.For PSMO film under different in-plane strain conditions,the saturated magnetization and Curie temperature can be qualitatively explained by double-exchange interaction and the Jahn-Teller distortion.However,the difference in the saturated magnetization with zero field cooling and 5 T field cooling is proportional to the strain gradient.Strain-gradient-induced structural disorder is proposed to enhance phonon-electron antiferromagnetic interactions and the corresponding antiferromagnetic-to-ferromagnetic phase transition via a strong magnetic field during the field cooling process.A non-monotonous structural transition of the MnO_(6) octahedral rotation can enlarge the strain gradient in PSMO film on a SrTiO_(3) substrate.This work demonstrates the existence of the flexomagnetic effect in ultrathin manganite film,which should be applicable to other complex oxide systems.展开更多
Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavio...Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice.Mice were randomly divided into four groups:sham,controlled cortical impact only,adeno-associated virus(AAV)-green fluorescent protein,and AAV-shEndorepellin-green fluorescent protein groups.In the controlled cortical impact model,the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+proliferating endothelial cells and the functional microvessel density in mouse brain.These changes resulted in improved neurological function compared with controlled cortical impact mice.Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein.Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization,which may further improve neurobehavioral outcomes.Furthermore,an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control.Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor-and angiopoietin-1-related signaling pathways.展开更多
ZrB_(2)-based ceramic composites were prepared by spark plasma sintering using ZrB_(2) powder prepared by molten salt method as raw material and SiC and nano-graphite as additives.The effects of nano-graphite addition...ZrB_(2)-based ceramic composites were prepared by spark plasma sintering using ZrB_(2) powder prepared by molten salt method as raw material and SiC and nano-graphite as additives.The effects of nano-graphite addition on the physical properties and oxidation resistance of ZrB_(2)-based ceramic samples were investigated.The results show that the addition of an appropriate amount of nano-graphite can effectively improve the density of ZrB_(2)-based ceramic composites and improve the physical properties of the materials.The flexural strength of the ceramic sample with 8 vol.%nano-graphite reached 418.54 MPa,which was 53.14% higher than that of ZrB_(2)-SiC ceramic material(273.31 MPa),and its oxidation resistance was also significantly improved.It demonstrats that the addition of an appropriate amount of nano-graphite can effectively improve the physical properties and oxidation resistance of ZrB_(2)-SiC ceramic composites.Via prolonging its service life in application and promoting the development of ZrB_(2)-based ceramic composites,it is of great significance for clean steel smelting.展开更多
The rapid development of iron and steel metallurgy technology has promoted the continuous innovation and iteration of carbon-containing refractories for clean steel smelting.To meet the high-quality requirements for c...The rapid development of iron and steel metallurgy technology has promoted the continuous innovation and iteration of carbon-containing refractories for clean steel smelting.To meet the high-quality requirements for clean steel production and full exploit the performance advantages of carbon-containing refractories in dynamic smelting environment,it is necessary to explore the role of graphite and modified graphite in carbon-containing refractories.Based on this,graphite surface modification methods,including surfactants,surface oxidation,and surface coating,and their applications in carbon-containing refractories are reviewed.The advantages and disadvantages of each method are analyzed for practical use.Furthermore,combined with the existing problems,the application prospect of improved graphite in carbon-containing refractories is discussed.展开更多
To solve the problem of poor high-temperature service performance caused by low carbonization of MgO-C refractories,low-carbon MgO–C refractories with excellent thermal shock,oxidation and corrosion resistances were ...To solve the problem of poor high-temperature service performance caused by low carbonization of MgO-C refractories,low-carbon MgO–C refractories with excellent thermal shock,oxidation and corrosion resistances were successfully designed by using SiC whiskers as reinforcing phases and introducing micro-Al_(2)O_(3) powders as additives.The results indicated that the addition of micro-Al_(2)O_(3) powders optimized the internal structure of the material,like the columnar β-Si_(3)N_(4) with a stepped distribution and the mosaic structure formed between granular and flaky Mg_(2)SiO_(4),which synergistically strengthened and toughened the material and gave the material excellent mechanical properties and thermal shock resistance.Specifically,the cold modulus of rupture and cold crushing strength after thermal shock were increased by 4.1 and 20.3 MPa,respectively.Moreover,the addition of micro-Al_(2)O_(3) powders promoted the formation of fine particles of Mg_(2)SiO_(4),MgAl_(2)O_(4) and MgO,as well as a dense protective layer of Mg_(2)SiO_(4) in the material under high-temperature environment.Furthermore,spinel and high-temperature solid solution were formed in the corrosion environment.The oxidation and corrosion resistances were greatly improved by 41%and 15%,respectively.展开更多
Single-phase face-centered cubic(fcc)high/medium-entropy alloys(H/MEAs)exhibit a much higher tendency to form nanoscale deformation twins than conventional fcc metals with similar low stacking fault energies(SFEs).Thi...Single-phase face-centered cubic(fcc)high/medium-entropy alloys(H/MEAs)exhibit a much higher tendency to form nanoscale deformation twins than conventional fcc metals with similar low stacking fault energies(SFEs).This extraordinary propensity for nanotwin formation in H/MEAs cannot therefore be ex-plained by their low SFEs alone.Here,using in situ compression tests of CrCoNi in comparison with Ag nanopillars inside a transmission electron microscope,we found that in the CrCoNi MEA,a high density of nanoscale twins continuously formed with an average thickness of 4.6 nm.In contrast,for similar experiments on Ag with almost identical SFE,following the nucleation of a few twins,they could further thicken to above one hundred nanometers by twin boundary migration.Molecular dynamics calculations indicated that in the highly-concentrated CrCoNi solid solution,the magnitude of the energy barriers for nucleating a stacking fault as a twin precursor in the pristine lattice and for the thickening of an existing twin both span a wide range and largely overlap with each other.Therefore,twin thickening through successive addition of atomic layers is prone to discontinuation,giving way to the nucleation of new twins at other sites where a lower energy barrier is encountered for partial-dislocation mediated fault formation.展开更多
In this work,we reported a series of monolithic 3D-printed Ni-Mo alloy electrodes for highly efficient water splitting at high current density(1500 mA cm^(-2))with excellent stability,which provides a solution to scal...In this work,we reported a series of monolithic 3D-printed Ni-Mo alloy electrodes for highly efficient water splitting at high current density(1500 mA cm^(-2))with excellent stability,which provides a solution to scale up Ni-Mo catalysts for HER to industry use.All possible Ni-Mo metal/alloy phases were achieved by tuning the atomic composition and heat treatment procedure,and they were investigated through both experiment and simulation,and the optimal NiMo phase shows the best performance.Density functional theory(DFT)calculations elucidate that the NiMo phase has the lowest H2O dissociation energy,which further explains the exceptional performance of NiMo.In addition,the microporosity was modulated via controlled thermal treatment,indicating that the 1100℃sintered sample has the best catalytic performance,which is attributed to the high electrochemically active surface area(ECSA).Finally,the four different macrostructures were achieved by 3D printing,and they further improved the catalytic performance.The gyroid structure exhibits the best catalytic performance of driving 500 mA cm^(-2)at a low overpotential of 228 mV and 1500 mA cm^(-2)at 325 mV,as it maximizes the efficient bubble removal from the electrode surface,which offers the great potential for high current density water splitting.展开更多
Layered Bi_(2)O_(2)Se nanosheets,characterized by a low bandgap,high electron mobility,and good air stability,have garnered significant attention for their potential applications in electronics and photonics.However,t...Layered Bi_(2)O_(2)Se nanosheets,characterized by a low bandgap,high electron mobility,and good air stability,have garnered significant attention for their potential applications in electronics and photonics.However,the relatively low photocurrent generated by single Bi_(2)O_(2)Se nanosheet photodetectors results in diminished switching ratios and responsiveness,thereby limiting the overall performance of Bi_(2)O_(2)Se-based photodetectors.In this study,we report a dual-band heterostructure photodetector constructed from high-quality Bi_(2)O_(2)Se nanosheets and CdS nanobelts.This device demonstrates exceptional photodetection performance in both the visible(450 nm)and near-infrared(1150 nm)regions,featuring a high switching ratio,increased responsivity,elevated specific detectivity,large external quantum efficiency,and rapid response speed.Notably,these key parameters exceed those reported in most Bi_(2)O_(2)Se-based photodetectors.Importantly,the Bi_(2)O_(2)Se/CdS heterostructure photodetector showcases impressive high-resolution imaging capabilities.These findings highlight the promising potential of this device for applications in image sensing and encrypted optical communication.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52231001)Evan Ma and Jun Ding also acknowledge XJTU for hosting their research at the Center for Alloy Innovation and Design(CAID).
文摘1.Introduction Multi-principal element alloys(MPEAs),with compositions in the central region of the multicomponent phase diagram,have been dubbed"high-entropy alloys"(HEAs)in recent years[1-11].A more general term currently accepted by the community for these MPEAs is complex concentrated alloys or compositionally complex alloys(CCAs)[12].These alloys are usually based on single-phase multi-principal element solid solutions,with no need or possibility to distinguish which species constitutes the solvent and which ones are solutes.This Viewpoint and Perspective article focuses on a salient feature in the internal structure of MPEAs,different from traditional metals and solvent-(dilute)solute solutions.Specifically,the unusual trait to be highlighted for these heavily concentrated solutions is their inherent chemical inhomogeneity on the nanoscale,in terms of the high propensity for compositional fluctuation and local chemical order.
基金supported by the National Natural Science Foundation of China (32171657,32301459)the grant from Institute of Zoology,Chinese Academy of Sciences (2023IOZ0104)the grant from Youth Innovation Promotion Association of Chinese Academy of Sciences (Y201920)。
文摘Successful non-native species can exhibit rapid divergence of key phenotypic traits to facilitate population persistence and further range expansion.Such phenotypic shifts can be sex-dependent as males and females usually have distinct reproductive and dispersal modes responding to relevant selective forces.Here,we showed significant phenotypic divergence in a set of fitness-related traits among males but not among females in the introduced oriental fire-bellied toads(Bombina orientalis),which established a non-native population in Beijing after being introduced in 1927.Specifically,compared with the native counterparts,introduced males displayed younger age and reduced body size,but increased hindlimb length and eye size after controlling the age effect.As the toads have male-biased sex ratio and male-biased dispersal during breeding season,the observed shifts may suggest that the male-biased selective forces have induced increased energy allocation to dispersal and foraging,and thus decreased allocation to maintain longevity in males.Overall,our study provides evidence for the modification of fitness-related phenotypic traits in a non-native anuran population compared with native populations and extends our understanding of key trait divergence in established non-native amphibian under sexual-unbalanced selective forces.
基金supported by the National Science Fund for Distinguished Young Scholars of China(No.52325102)the Natural Science Foundation of Zhejiang Province,China(No.LZ22E010001)the National Key R&D Program of China(No.2023YFB2405802).
文摘Precipitation at grain boundaries is typically not regarded as an efficient method for strengthening materials since it can induce grain boundary embrittlement, which detrimentally affects ductility. In this research, we developed a multi-principal element alloy (MPEA) with the composition Cr_(30)Co_(30)Ni_(30)Al_(5)Ti_(5) (at.%), incorporating both intragranular and intergranular nanoprecipitates. Utilizing multiscale, three-dimensional, and in-situ electron microscopy techniques, coupled with computational simulations, we established that intergranular nanoprecipitation in this material plays a crucial role in enhancing strength and promoting dislocation plasticity. The structure of intergranular nanoprecipitation comprises multiple phases with varying composition and structure. Despite the diversity, the crystal planes conducive to the easy glide of dislocations are well-matched, allowing for the sustained continuity of dislocation slipping across different phase structures. Simultaneously, this structure generates an undulated stress field near grain boundaries, amplifying the strengthening effect and facilitating multiple slip and cross-slip during deformation. Consequently, it promotes the proliferation and storage of dislocations. As a result, our material exhibits a yield strength of approximately 1010 MPa and an ultimate tensile strength of around 1500 MPa, accompanied by a significant fracture elongation of 41 %. Our findings illuminate the potential for harnessing intergranular nanoprecipitation to optimize the strength-ductility trade-off in MPEAs, emphasizing the strategy of leveraging complex compositions for the design of sophisticated functional microstructures.
基金supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(NO.SML2021SP201)the National Natural Science Foundation of China(Grant No.42306200 and 42306216)+2 种基金the National Key Research and Development Program of China(Grant No.2023YFC3008100)the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311021004)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(Project No.SL2021ZD203)。
文摘Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose an Attention Spatio-Temporal predictive Generative Adversarial Network(AST-GAN)model for predicting the temporal and spatial distribution of TCs.The model forecasts the spatial distribution of TC wind speeds for the next 15 hours at 3-hour intervals,emphasizing the cyclone's center,high wind-speed areas,and its asymmetric structure.To effectively capture spatiotemporal feature transfer at different time steps,we employ a channel attention mechanism for feature selection,enhancing model performance and reducing parameter redundancy.We utilized High-Resolution Weather Research and Forecasting(HWRF)data to train our model,allowing it to assimilate a wide range of TC motion patterns.The model is versatile and can be applied to various complex scenarios,such as multiple TCs moving simultaneously or TCs approaching landfall.Our proposed model demonstrates superior forecasting performance,achieving a root-mean-square error(RMSE)of 0.71 m s^(-1)for overall wind speed and 2.74 m s^(-1)for maximum wind speed when benchmarked against ground truth data from HWRF.Furthermore,the model underwent optimization and independent testing using ERA5reanalysis data,showcasing its stability and scalability.After fine-tuning on the ERA5 dataset,the model achieved an RMSE of 1.33 m s^(-1)for wind speed and 1.75 m s^(-1)for maximum wind speed.The AST-GAN model outperforms other state-of-the-art models in RMSE on both the HWRF and ERA5 datasets,maintaining its superior performance and demonstrating its effectiveness for spatiotemporal prediction of TCs.
文摘Bacterial infections pose a significant threat to human health and entail substantial economic losses.Due to the broad-spectrum antibacterial effect and low susceptibility to drug resistance,photodynamic therapy(PDT),a nontraditional antibacterial approach,has garnered a lot of attention.In PDT,the selection of photosensitizer(PS)is crucial because it directly affects the efficiency and safety of the treatment.As a versatile fluorophore,the advantages of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene(BODIPY)used as a PS for antibacterial PDT are mainly reflected in its high quantum yield of singlet oxygen,easy modification,and exceptional photostability.Through strategic chemical modifications of the BODIPY structures,it is possible to enhance their photodynamic antibacterial activity and refine their selectivity for bacterial killing.This review focuses on the application of BODIPY-based PSs for treating bacterial infections.According to the design strategies of photodynamic antibacterial materials incorporating BODIPY,a variety of representative therapeutic agents having emerged in recent years are classified and discussed,aiming to offer insights for future research and development in this field.
基金the financial support from the National Natural Science Foundation of China(U21A2057 and 52402034)the Key Research and Development Program of Hubei Province(2023BAB106).
文摘Nitrogen gas pressure sintering was successfully employed to achieve the in-situ formation of Si_(3)N_(4)-bonded MgO-C refractories.The primary objective was to investigate the influence of different gas pressures on the mechanical properties and microstructure of MgO-C refractories.The results indicate that higher nitrogen pressure promotes the transformation of silicon nitride from theαphase to theβphase.This phase transition positively impacts the mechanical properties of Si_(3)N_(4)-bonded MgO-C refractories,leading to an enhancement in their overall strength.Notably,when the nitrogen pressure was set at 3 MPa,exceptional compressive strength of 109.7 MPa and an elastic modulus of 142.4 GPa were achieved by these prepared refractories.These findings highlight the great potential for utilizing gas pressure sintered Si_(3)N_(4)-MgO-C refractories.
基金supported by National Natural Science Foundation of China,China(No.52101138)Natural Science Foundation of Hubei Province,China(No.2020CFB259)+7 种基金Shenzhen Science and Technology Program,China(No.JCYJ20220530160813032)State Key Lab of Advanced Metals and Materials,China(No.2020-Z01)State Key Laboratory for Mechanical Behavior of Materials,China(No.20202205)Guangdong Basic and Applied Basic Research Foundation,China(Nos.2020A1515110531,2021A1515111122)State Key Laboratory of Materials Processing and Die&Mold Technology,Huazhong University of Science and Technology,China(No.P2021-021)support from the National Natural Science Foundation of China(No.12004294)National Youth Talents Programsupport by Center for Alloy Innovation and Design(CAID)and HPC platform of Xi’an Jiaotong University。
基金supported by the National Natural Science Foundation of China(Nos.52370073,12274115)Program for Science and Technology Innovation Team in Universities of Henan Province(No.24IRTSTHN017)+3 种基金Natural Science Foundation of Henan Province(No.212300410336)Program for Science and Technology Innovation Talent in Universities of Henan Province(No.23HASTIT027)Key Scientific and Technological Project of Henan Province(No.222102320188)Key Project of Science and Technology Research of Henan Provincial Department of Education(No.21A430008)。
文摘Peroxymonosulfate(PMS)activation and photocatalysis are effective technologies to remove organic pollutants,but the adsorption effect of the catalyst is usually unheeded in degradation process.Herein,a bifunctional catalyst of amorphous MoS_(x)(a-MoS_(x))with 3D layer-by-layer superstructure was synthesized by assembling basic active units[Mo_(3)S_(13)]^(2-)of MoS_(2).The large interlayer spacing and high exposure of active sites render a-MoS_(x)to have excellent synergy of adsorption and photo-assisted PMS activation for tetracycline(TC)degradation.Experiments and DFT calculation show that TC can be efficiently enriched on a-MoS_(x)by pore filling,π-πinteraction,hydrogen bonding and high adsorption energy.Subsequently,PMS can be quickly activated through electron transfer with a-MoS_(x),resulting in high TC degradation efficiency of 96.6%within 20 min.In addition,the synergistic mechanism of adsorption and photo-assisted PMS activation was explored,and the degradation pathway of TC was expounded.This work is inspirational for constructing bifunctional catalysts with superior synergistic adsorption and catalytic capabilities to remove refractory organic pollutants in water.
基金the Clinical Research Ethics Committees of Wuxi Taihu Hospital(Approval Number THH-YXLL-2021-0103).
文摘BACKGROUND Renal stones ranging 20–40 mm are very common in China.Although no largesample clinical studies have confirmed the clinical efficacy and safety of this method,there is also a lack of comparative data with traditional treatment.AIM To investigate the clinical efficacy of flexible ureteroscopy(FURS)and percutaneous nephrolithotomy(PCNL)by postoperative stone clearance and changes in soluble vascular cell adhesion molecule 1(sVCAM-1)and kidney injury molecule 1(KIM-1)levels in patients with large kidney stones(>2 cm in diameter).METHODS This single-center observational study was performed at a Chinese hospital between January 1,2021,and October 30,2023.All 250 enrolled patients were diagnosed with large kidney stones(>2 cm)and divided into a FURS group(n=145)and a PCNL group(n=105)by the surgical method.The FURS group was treated with flexible ureteroscopy and the PCNL group was treated with percutaneous nephrolithotomy.The operation time,time to palinesthesia,intraoperative blood loss,drop in hemoglobin,length of hospital stay,stone clearance rate,and complications were recorded in the two groups.Preoperative and postoperative serum sVCAM-1 levels,erythrocyte sedimentation rate(ESR),urine KIM-1 levels,preoperative and postoperative pain visual analog scale(VAS)and Wisconsin Stone Quality of Life Questionnaire(WISQOL)scores were also documented.RESULTS All 250 eligible patients completed the follow-up.There were no significant differences in baseline characteristics between the two groups(P>0.05).The operation time in the FURS group was significantly greater than that in the PCNL group.The time to ambulation,intraoperative blood loss,decrease in hemoglobin,and length of hospital stay were significantly lower in the FURS group than in the PCNL group.The FURS group also had a significantly higher stone clearance rate and a lower incidence of postoperative complications.There was no significant difference in antibiotic use between the groups.Postoperative serum sVCAM-1 levels,urine KIM-1 levels,and VAS scores were lower in the FURS group than in the PCNL group,but postoperative ESR and WISQOL scores were greater in the FURS group than in the PCNL group.CONCLUSION FURS demonstrated superior clinical efficacy in treating large kidney stones(>2 cm in diameter)compared PCNL.It not only improved the postoperative stone clearance rate and reduced complications and recovery time but also positively affected serum SCM-1,ESR,and urine KIM-1 levels,subsequent improvement of patient quality of life.
基金supported by the Natural Science Foundation of Guangdong Province of China(2023A1515010882)the Large Scientific Facility Open Subject of Songshan Lake,Dongguan,Guangdong Province of China(KFKT2022B06)+2 种基金the Singapore Ministry of Education Academic Research Fund Tier 2(MOE2015-T2-1-016,MOE2018-T2-1-019,and MoE T1 R-284-000-196-114)the Singapore National Research Foundation(NRF-CRP10-2012-02)supported from SSLS via National University of Singapore Core Support(C-380-003-003-001).
文摘Strain gradient is a normal phenomenon around a heterostructural interface in ultrathin film,and it is important to determine its effect on magnetic interactions to understand interfacial coupling.In this work,ultrathin Pr_(0.67)Sr_(0.33)MnO_(3)(PSMO)films on different substrates are studied.For PSMO film under different in-plane strain conditions,the saturated magnetization and Curie temperature can be qualitatively explained by double-exchange interaction and the Jahn-Teller distortion.However,the difference in the saturated magnetization with zero field cooling and 5 T field cooling is proportional to the strain gradient.Strain-gradient-induced structural disorder is proposed to enhance phonon-electron antiferromagnetic interactions and the corresponding antiferromagnetic-to-ferromagnetic phase transition via a strong magnetic field during the field cooling process.A non-monotonous structural transition of the MnO_(6) octahedral rotation can enlarge the strain gradient in PSMO film on a SrTiO_(3) substrate.This work demonstrates the existence of the flexomagnetic effect in ultrathin manganite film,which should be applicable to other complex oxide systems.
基金supported by the National Natural Science Foundation of China,Nos.81801236(to ZX),81974189(to HT)a grant from Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,No.ynlc201719(to QZ).
文摘Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice.Mice were randomly divided into four groups:sham,controlled cortical impact only,adeno-associated virus(AAV)-green fluorescent protein,and AAV-shEndorepellin-green fluorescent protein groups.In the controlled cortical impact model,the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+proliferating endothelial cells and the functional microvessel density in mouse brain.These changes resulted in improved neurological function compared with controlled cortical impact mice.Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein.Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization,which may further improve neurobehavioral outcomes.Furthermore,an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control.Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor-and angiopoietin-1-related signaling pathways.
基金the project supported by the Natural Science Foundation of Hubei Province(Grant No.2023BAB106)the National Natural Science Foundation of China(Grant No.U20A20239)the Scientific Research Project of Education Department of Hubei Province(D20211104).
文摘ZrB_(2)-based ceramic composites were prepared by spark plasma sintering using ZrB_(2) powder prepared by molten salt method as raw material and SiC and nano-graphite as additives.The effects of nano-graphite addition on the physical properties and oxidation resistance of ZrB_(2)-based ceramic samples were investigated.The results show that the addition of an appropriate amount of nano-graphite can effectively improve the density of ZrB_(2)-based ceramic composites and improve the physical properties of the materials.The flexural strength of the ceramic sample with 8 vol.%nano-graphite reached 418.54 MPa,which was 53.14% higher than that of ZrB_(2)-SiC ceramic material(273.31 MPa),and its oxidation resistance was also significantly improved.It demonstrats that the addition of an appropriate amount of nano-graphite can effectively improve the physical properties and oxidation resistance of ZrB_(2)-SiC ceramic composites.Via prolonging its service life in application and promoting the development of ZrB_(2)-based ceramic composites,it is of great significance for clean steel smelting.
基金the project supported by the Natural Science Foundation of Hubei Province(Grant No.2023BAB106)the National Natural Science Foundation of China(Grant No.U20A20239).
文摘The rapid development of iron and steel metallurgy technology has promoted the continuous innovation and iteration of carbon-containing refractories for clean steel smelting.To meet the high-quality requirements for clean steel production and full exploit the performance advantages of carbon-containing refractories in dynamic smelting environment,it is necessary to explore the role of graphite and modified graphite in carbon-containing refractories.Based on this,graphite surface modification methods,including surfactants,surface oxidation,and surface coating,and their applications in carbon-containing refractories are reviewed.The advantages and disadvantages of each method are analyzed for practical use.Furthermore,combined with the existing problems,the application prospect of improved graphite in carbon-containing refractories is discussed.
基金the Scientific Research Fund of Hunan Provincial Education Department(22B0856)the Hengyang"Xiaohe"Science and Technology Talent Special Project([2023]45)+3 种基金the Guidance Plan Project of Hengyang City([2023]40)the National Natural Science Foundation of China(U20A20239)the College Students'Innovation and Entrepreneurship Training Project(S202311528055)the Characteristic Application Discipline of Material Science Engineering in Hunan Province([2022]351).
文摘To solve the problem of poor high-temperature service performance caused by low carbonization of MgO-C refractories,low-carbon MgO–C refractories with excellent thermal shock,oxidation and corrosion resistances were successfully designed by using SiC whiskers as reinforcing phases and introducing micro-Al_(2)O_(3) powders as additives.The results indicated that the addition of micro-Al_(2)O_(3) powders optimized the internal structure of the material,like the columnar β-Si_(3)N_(4) with a stepped distribution and the mosaic structure formed between granular and flaky Mg_(2)SiO_(4),which synergistically strengthened and toughened the material and gave the material excellent mechanical properties and thermal shock resistance.Specifically,the cold modulus of rupture and cold crushing strength after thermal shock were increased by 4.1 and 20.3 MPa,respectively.Moreover,the addition of micro-Al_(2)O_(3) powders promoted the formation of fine particles of Mg_(2)SiO_(4),MgAl_(2)O_(4) and MgO,as well as a dense protective layer of Mg_(2)SiO_(4) in the material under high-temperature environment.Furthermore,spinel and high-temperature solid solution were formed in the corrosion environment.The oxidation and corrosion resistances were greatly improved by 41%and 15%,respectively.
基金supported by the National Natural Science Foundation of China(Nos.52231001,51971167,and 52031011)the Xi’an Science and Technology Plan(No.2017xasjl014)+4 种基金B.G.gratefully acknowledges the financial support of the project from the Ministry of Science and Technology of China(No.2017YFA0700703)the support by the National Natural Science Foundation of China(No.92060102)E.M.and J.D.acknowledge the support at CAID by XJTU.J.D.acknowledges support from the National Natural Science Foundation of China(No.12004294)the HPC platform of Xi’an Jiaotong Universitysupported by the Office of Science,Office of Basic Energy Sciences,Materials Sciences and Engineering Division,of the U.S.Department of Energy under Contract No.DE-AC02-05-CH11231.
文摘Single-phase face-centered cubic(fcc)high/medium-entropy alloys(H/MEAs)exhibit a much higher tendency to form nanoscale deformation twins than conventional fcc metals with similar low stacking fault energies(SFEs).This extraordinary propensity for nanotwin formation in H/MEAs cannot therefore be ex-plained by their low SFEs alone.Here,using in situ compression tests of CrCoNi in comparison with Ag nanopillars inside a transmission electron microscope,we found that in the CrCoNi MEA,a high density of nanoscale twins continuously formed with an average thickness of 4.6 nm.In contrast,for similar experiments on Ag with almost identical SFE,following the nucleation of a few twins,they could further thicken to above one hundred nanometers by twin boundary migration.Molecular dynamics calculations indicated that in the highly-concentrated CrCoNi solid solution,the magnitude of the energy barriers for nucleating a stacking fault as a twin precursor in the pristine lattice and for the thickening of an existing twin both span a wide range and largely overlap with each other.Therefore,twin thickening through successive addition of atomic layers is prone to discontinuation,giving way to the nucleation of new twins at other sites where a lower energy barrier is encountered for partial-dislocation mediated fault formation.
文摘In this work,we reported a series of monolithic 3D-printed Ni-Mo alloy electrodes for highly efficient water splitting at high current density(1500 mA cm^(-2))with excellent stability,which provides a solution to scale up Ni-Mo catalysts for HER to industry use.All possible Ni-Mo metal/alloy phases were achieved by tuning the atomic composition and heat treatment procedure,and they were investigated through both experiment and simulation,and the optimal NiMo phase shows the best performance.Density functional theory(DFT)calculations elucidate that the NiMo phase has the lowest H2O dissociation energy,which further explains the exceptional performance of NiMo.In addition,the microporosity was modulated via controlled thermal treatment,indicating that the 1100℃sintered sample has the best catalytic performance,which is attributed to the high electrochemically active surface area(ECSA).Finally,the four different macrostructures were achieved by 3D printing,and they further improved the catalytic performance.The gyroid structure exhibits the best catalytic performance of driving 500 mA cm^(-2)at a low overpotential of 228 mV and 1500 mA cm^(-2)at 325 mV,as it maximizes the efficient bubble removal from the electrode surface,which offers the great potential for high current density water splitting.
基金supported by the National Natural Science Foundation of China(Nos.62464014,12464025,12264056,and 12264057)the Basic Research Program of Yunnan Province(No.202401AT070134)+2 种基金Project for Building a Science and Technology Innovation Center Facing South Asia and Southeast Asia(No.202403AP140015)Spring City Plan:The High-level Talent Promotion and Training Project of Kunming(No.2022SCP005)Yunnan Expert Workstation(No.202205AF150008).
文摘Layered Bi_(2)O_(2)Se nanosheets,characterized by a low bandgap,high electron mobility,and good air stability,have garnered significant attention for their potential applications in electronics and photonics.However,the relatively low photocurrent generated by single Bi_(2)O_(2)Se nanosheet photodetectors results in diminished switching ratios and responsiveness,thereby limiting the overall performance of Bi_(2)O_(2)Se-based photodetectors.In this study,we report a dual-band heterostructure photodetector constructed from high-quality Bi_(2)O_(2)Se nanosheets and CdS nanobelts.This device demonstrates exceptional photodetection performance in both the visible(450 nm)and near-infrared(1150 nm)regions,featuring a high switching ratio,increased responsivity,elevated specific detectivity,large external quantum efficiency,and rapid response speed.Notably,these key parameters exceed those reported in most Bi_(2)O_(2)Se-based photodetectors.Importantly,the Bi_(2)O_(2)Se/CdS heterostructure photodetector showcases impressive high-resolution imaging capabilities.These findings highlight the promising potential of this device for applications in image sensing and encrypted optical communication.