Walnut(Juglans regia L.)is a good source of lipids and polyunsaturated fatty acids(PUFAs).In order to explore the biosynthesis molecular mechanism of oil accumulation and fatty acid(FA)synthesis in walnut,the samples ...Walnut(Juglans regia L.)is a good source of lipids and polyunsaturated fatty acids(PUFAs).In order to explore the biosynthesis molecular mechanism of oil accumulation and fatty acid(FA)synthesis in walnut,the samples at different development periods of three walnut cultivars,’Zhipi’(ZP),’Xinwu 417’(W417)and’Xinwen 81’(W81)were collected for transcriptomic analysis.The analysis of oil accumulation and FA profiles showed that the oil content in mature walnut kernel was nearly 70%,and over 90%of FAs were PUFAs.We identified 126 candidate genes including 64 genes for FA de novo synthesis,45 genes for triacylglycerol assembly,and 17 genes for oil bodies involved in lipid biosynthesis by RNA-sequencing.Ten key enzymes including ACCase,LACS6,LACS8,SAD,FAD2,FAD3,LPAAT1,DGAT2,PDAT2,and PLC encoded by 19 genes were highly associated with lipid biosynthesis.Quantitative PCR analysis further validated 9 important genes,and the results were well consistent with our transcriptomic data.Finally,5 important transcription factors including WRI1,ABI3,FUS3,PKL and VAL1 were identified,and their main regulatory genes might contain ACCase,KASII,LACS,FAD3 and LPAAT which were determined through correlation analysis of expression levels for 27 walnut samples.These findings will provide a comprehensive understanding and valuable information on the genetic engineering and molecular breeding in walnut.展开更多
Current organoid-generation strategies rely predominantly on intricate in vitro manipulations of dissociated stem cells,including isolation,expansion,and genetic modification.However,these approaches present significa...Current organoid-generation strategies rely predominantly on intricate in vitro manipulations of dissociated stem cells,including isolation,expansion,and genetic modification.However,these approaches present significant challenges in terms of safety and scalability for clinical applications.An alternative strategy involves the direct generation of organoids from readily available tissues.Herein,we report the generation of functional organoids representing all three germ layers from human adult adipose tissue without single-cell processing steps.Specifically,by employing a specialized suspension culture system,we have developed reaggregated microfat(RMF)tissues,which differentiated into mesodermal bone marrow organoids capable of reconstituting human normal hematopoiesis in immunodeficient mice,endodermal insulin-producing organoids that reversed hyperglycemia in streptozotocin(STZ)-induced diabetic mice,and ectodermal nervous-like tissues resembling neurons and neuroglial cells.These findings therefore highlight the potential of human adipose tissue as a safe,scalable,and clinically viable source for organoid-based regenerative therapies.展开更多
In response to the three major contradictions,safety,cognition,and ability cultivation,existing in the practical teaching of geological hazard courses,this paper proposes a“virtual-real integration”teaching reform s...In response to the three major contradictions,safety,cognition,and ability cultivation,existing in the practical teaching of geological hazard courses,this paper proposes a“virtual-real integration”teaching reform scheme,using earthquake disasters as an example.By integrating digital twin technology and artificial intelligence technology,a four-layer teaching framework consisting of data layer,model layer,platform layer,and intelligent layer is constructed.Progressive teaching segments of“cognition-simulation-decision-making”are designed to establish a comprehensive training path from seismic geological survey to disaster early warning and decision-making.This scheme shifts the traditional field practice venue to a safe virtual environment,promotes students’understanding of geological hazards from static fragments to dynamic processes,enhances their comprehensive decision-making ability in geological disaster prevention and mitigation,and provides theoretical support and practical guidance for cultivating interdisciplinary talents in geological hazard prevention.展开更多
Human skin exhibits a remarkable capability to perceive contact forces and environmental temperatures,providing complex information that is essential for its subtle control.Despite recent advancements in soft tactile ...Human skin exhibits a remarkable capability to perceive contact forces and environmental temperatures,providing complex information that is essential for its subtle control.Despite recent advancements in soft tactile sensors,accurately decoupling signals—specifically separating forces from directional orientation and temperature—remains a challenge thus resulting in failure to meet the advanced application requirements of robots.This study proposes,F3T,a multilayer soft sensor unit designed to achieve isolated measurements and mathematical decoupling of normal pressure,omnidirectional tangential forces,and temperature.We developed a circular coaxial magnetic film featuring a floating mount multilayer capacitor that facilitated the physical decoupling of normal and tangential forces in all directions.Additionally,we incorporated an ion gel-based temperature-sensing film into the tactile sensor.The proposed sensor was resilient to external pressures and deformations,and could measure temperature and significantly eliminate capacitor errors induced by environmental temperature changes.In conclusion,our novel design allowed for the decoupled measurement of multiple signals,laying the foundation for advancements in high-level robotic motion control,autonomous decision-making,and task planning.展开更多
Our previous studies have demonstrated that TP53-induced glycolysis and apoptosis regulator(TIGAR)can protect neurons after cerebral ischemia/reperfusion.However,the role of TIGAR in neonatal hypoxic-ischemic brain da...Our previous studies have demonstrated that TP53-induced glycolysis and apoptosis regulator(TIGAR)can protect neurons after cerebral ischemia/reperfusion.However,the role of TIGAR in neonatal hypoxic-ischemic brain damage(HIBD)remains unknown.In the present study,7-day-old Sprague-Dawley rat models of HIBD were established by permanent occlusion of the left common carotid artery followed by 2-hour hypoxia.At 6 days before induction of HIBD,a lentiviral vector containing short hairpin RNA of either TIGAR or gasdermin D(LV-sh_TIGAR or LV-sh_GSDMD)was injected into the left lateral ventricle and striatum.Highly aggressively proliferating immortalized(HAPI)microglial cell models of in vitro HIBD were established by 2-hour oxygen/glucose deprivation followed by 24-hour reoxygenation.Three days before in vitro HIBD induction,HAPI microglial cells were transfected with LV-sh_TIGAR or LV-sh_GSDMD.Our results showed that TIGAR expression was increased in the neonatal rat cortex after HIBD and in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation.Lentivirusmediated TIGAR knockdown in rats markedly worsened pyroptosis and brain damage after hypoxia/ischemia in vivo and in vitro.Application of exogenous nicotinamide adenine dinucleotide phosphate(NADPH)increased the NADPH level and the glutathione/oxidized glutathione ratio and decreased reactive oxygen species levels in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation.Additionally,exogenous NADPH blocked the effects of TIGAR knockdown in neonatal HIBD in vivo and in vitro.These findings show that TIGAR can inhibit microglial pyroptosis and play a protective role in neonatal HIBD.The study was approved by the Animal Ethics Committee of Soochow University of China(approval No.2017LW003)in 2017.展开更多
Abstract: Microstructural evolution in a new kind of aluminum (A1) alloy with the chemical composition of AI-8.82Zn-2.08Mg- 0.80Cu-3.31Sc-0.3Zr was investigated. It is found that the secondary phase MgZn2 is comple...Abstract: Microstructural evolution in a new kind of aluminum (A1) alloy with the chemical composition of AI-8.82Zn-2.08Mg- 0.80Cu-3.31Sc-0.3Zr was investigated. It is found that the secondary phase MgZn2 is completely dissolved into the matrix during a short homogenization treatment (470℃, 1 h), while the primary phase A13(Sc,Zr) remains stable. This is due to Sc and Zr additions into the A1 al- loy, high Zn/Mg mass ratio, and low Cu content. The experimental findings fit well with the results calculated by the homogenization diffusion kinetics equation. The alloy shows an excellent mechanical performance after the short homogenization process followed by hot-extrusion and T6 treatment. Consequently, a good combination of low energy consumotion and favorable mechanical properties is obtained.展开更多
Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady o...Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady operation of pipelines.In this research,a novel experimental device is designed to investigate the erosion characteristics of 304 stainless and L245 carbon steel in the gas-solid two-phase flow.Regarding the impacts on erosion rate,the typical factors such as gas velocity,impact angle,erosion time,particle material and target material are individually observed and comprehensive analyzed with the assistance of apparent morphology characterized via Scanning Electron Microscope.Experimental results show that the severest erosion occurs when the angle reaches approximate 30°whether eroded by type I or type II particles,which is observed in both two types of steel.Concretely,304 stainless steel and L245 carbon steel appear to be cut at low angles,and impacted at high angles to form erosion pits.In the steady operational state,the erosion rate is insensitive to the short erosion time and free from the influences caused by the“erosion latent period”.Based on the comparison between experimental data and numerical results generated by existing erosion models,a modified model with low tolerance(<3%),high feasibility and strong consistency is proposed to make an accurate prediction of the erosion in terms of two types of steel under various industrial conditions.展开更多
Research has shown that long-chain noncoding RNAs(lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. ...Research has shown that long-chain noncoding RNAs(lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. c-Jun plays a key role in the repair of peripheral nerve injury. However, the precise underlying mechanism of c-Jun remains unclear. In this study, we performed microarray and bioinformatics analysis of mouse crush-injured sciatic nerves and found that the lncRNA Pvt1 was overexpressed in Schwann cells after peripheral nerve injury. Mechanistic studies revealed that Pvt1 increased c-Jun expression through sponging miRNA-214. We overexpressed Pvt1 in Schwann cells cultured in vitro and found that the proliferation and migration of Schwann cells were enhanced, and overexpression of miRNA-214 counteracted the effects of Pvt1 overexpression on Schwann cell proliferation and migration. We conducted in vivo analyses and injected Schwann cells overexpressing Pvt1 into injured sciatic nerves of mice. Schwann cells overexpressing Pvt1 enhanced the regeneration of injured sciatic nerves following peripheral nerve injury and the locomotor function of mice was improved. Our findings reveal the role of lncRNAs in the repair of peripheral nerve injury and highlight lncRNA Pvt1 as a novel potential treatment target for peripheral nerve injury.展开更多
This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interan...This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interannual timescales.The in-phase configuration of the WNPSH and EAJ is characterized by the westward(eastward)extension of the WNPSH and the southward(northward)shift of the EAJ,which is consistent with the general correspondence between their variations.The out-of-phase configuration includes the residual cases.We find that the in-phase configuration manifests itself as a typical meridional teleconnection.For instance,there is an anticyclonic(cyclonic)anomaly over the tropical western North Pacific and a cyclonic(anticyclonic)anomaly over the mid-latitudes of East Asia in the lower troposphere.These circulation anomalies are more conducive to rainfall anomalies over the Yangtze River basin and south Japan than are the individual WNPSH or EAJ.By contrast,for the out-of-phase configuration,the mid-latitude cyclonic(anticyclonic)anomaly is absent,and the lower-tropospheric circulation anomalies feature an anticyclonic(cyclonic)anomaly with a large meridional extension.Correspondingly,significant rainfall anomalies move northward to North China and the northern Korean Peninsula.Further results indicate that the out-of-phase configuration is associated with the developing phase of ENSO,with strong and significant sea surface temperature(SST)anomalies in the tropical central and eastern Pacific which occur simultaneously during summer and persist into the following winter.This is sharply different from the in-phase configuration,for which the tropical SSTs are not a necessity.展开更多
Seasonal prediction of summer precipitation over eastern China is closely linked to the East Asian monsoon circulation,which is largely affected by the El Niño-Southern Oscillation(ENSO).In this study,results sho...Seasonal prediction of summer precipitation over eastern China is closely linked to the East Asian monsoon circulation,which is largely affected by the El Niño-Southern Oscillation(ENSO).In this study,results show that spring soil moisture(SM)over the Indo-China peninsula(ICP)could be a reliable seasonal predictor for eastern China summer precipitation under non-ENSO conditions.When springtime SM anomalies are present over the ICP,they trigger a structured response in summertime precipitation over most of eastern China.The resultant south-to-north,tri-polar configuration of precipitation anomalies has a tendency to yield increased(decreased)precipitation in the Yangtze River basin and decreased(increased)in South and North China with a drier(wetter)spring soil condition in the ICP.The analyses show that ENSO exerts a powerful control on the East Asian circulation system in the ENSO-decaying summer.In the case of ENSO forcing,the seasonal predictability of the ICP spring SM for eastern China summer precipitation is suppressed.However,in the absence of the influence of ENSO sea surface temperature anomalies from the preceding winter,the SM anomalies over the ICP induce abnormal local heating and a consequent geopotential height response owing to its sustained control on local temperature,which could,in turn,lead to abnormal eastern China summer precipitation by affecting the East Asian summer monsoon circulation.The present findings provide a better understanding of the complexity of summer climate predictability over eastern China,which is of potential significance for improving the livelihood of the people.展开更多
For the first time, we developed porous Pt-Ni alloying nanoparticles with predominant(111) facets under intense magnetic fields. Electrochemical analysis revealed that the Pt-Ni alloying nanoparticles obtained at 2 Te...For the first time, we developed porous Pt-Ni alloying nanoparticles with predominant(111) facets under intense magnetic fields. Electrochemical analysis revealed that the Pt-Ni alloying nanoparticles obtained at 2 Tesla exhibited a superior catalytic activity and durability for oxygen reduction reaction. This work demonstrated that the imposition of intense magnetic field could be considered as a new approach for developing efficient alloying electrocatalysts with preferential facets.展开更多
To effectively solve the agglomeration problems in the solid state reaction process,pre-adding glucose is adopted to the synthesis of Li Fe PO4/C energy materials using Fe–P waste slag. The average particle grain siz...To effectively solve the agglomeration problems in the solid state reaction process,pre-adding glucose is adopted to the synthesis of Li Fe PO4/C energy materials using Fe–P waste slag. The average particle grain size of Li FeP O4/C decreases,and the impurities in Li Fe PO4/C composites reduce to a great extent. It makes great sense to the mass industrial production. The optimum synthesis conditions determined in this work are based on the orthogonal experiments. The samples synthesized in a scale of 500 g exhibit high purity,excellent electrochemical performance,high reaction activity,good reversibility,and low polarization level.The discharge capacities are 145,134,117,and 102 m Ah/g at the current densities of 0.1 C,0.2 C,0.5 C and1 C,respectively. This work puts forward a practical suggestion for mass producing environmental benign and low cost Li FeP O4/C as cathode materials of lithium ion batteries.展开更多
Using 20 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), the simulation of the Southwest Indian Ocean (SWIO) thermocline dome is evaluated and its role in shaping the Indian Ocean Basin (IOB...Using 20 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), the simulation of the Southwest Indian Ocean (SWIO) thermocline dome is evaluated and its role in shaping the Indian Ocean Basin (IOB) mode following E1 Nifio investigated. In most of the CMIP5 models, due to an easterly wind bias along the equator, the simulated SWIO thermocline is too deep, which could further influence the amplitude of the interannual IOB mode. A model with a shallow (deep) thermocline dome tends to simulate a strong (weak) IOB mode, including key attributes such as the SWIO SST warming, antisymmetric pattern during boreal spring, and second North Indian Ocean warming during boreal summer. Under global warming, the thermocline dome deepens with the easterly wind trend along the equator in most of the models. However, the IOB amplitude does not follow such a change of the SWIO thermocline among the models; rather, it follows future changes in both ENSO forcing and local convection feedback, suggesting a decreasing effect of the deepening SWIO thermocline dome on the change in the IOB mode in the future.展开更多
Porcine pegivirus(PPgV)is a member of the Pegivirus genus in the Flaviviridae family.PPg V is an emerging virus that has been discovered in swine herds in Germany,the United States,China,Poland,Italy,and the United Ki...Porcine pegivirus(PPgV)is a member of the Pegivirus genus in the Flaviviridae family.PPg V is an emerging virus that has been discovered in swine herds in Germany,the United States,China,Poland,Italy,and the United Kingdom,indicating a wide geographical distribution.In this retrospective study,339 pig serum samples were collected from 20 different commercial swine farms located in nine cities in Guangdong Province,China,from 2016 to 2018,to investigate the prevalence and genetic diversity of PPg V in this geographical region.PPg V was detected in 55%(11/20)of the farms using nested reverse transcription PCR,with 6.2%(21/339)of pigs testing positive for PPg V.The yearly PPg V-positive rate increased from 2.6%to 7.5%between 2016 and 2018.Sequencing of PPg V-positive samples identified two complete polyprotein genes and seven partial NS5 B genes from different farms.Comparative analysis of the polyprotein genes revealed that PPg V sequences obtained in this study showed 87.4%–97.2%similarity at the nucleotide level and 96.5%–99.4%similarity at the amino acid level with the reference sequences.Sequence alignment and phylogenetic analysis of the complete polyprotein gene and partial NS5 B and NS3 genes demonstrated a high genetic similarity with the samples from the USA.The finding of the wide distribution of PPg V in swine herds in Guangdong Province will contribute to the understanding of the epidemiological characteristics and genetic evolution of PPg V in China.展开更多
Developing efficient and low-cost electrocatalysts is essential for the electroreduction of N_(2) to NH_(3).Here,highly monodispersed MoO_(3) clusters loaded on a coral-like CeO_(x)compound with abundant oxygen vacanc...Developing efficient and low-cost electrocatalysts is essential for the electroreduction of N_(2) to NH_(3).Here,highly monodispersed MoO_(3) clusters loaded on a coral-like CeO_(x)compound with abundant oxygen vacancies are successfully prepared by an impregnation-reduction method.The MoO_(3) clusters with small sizes of 2.6±0.5 nm are induced and anchored by the oxygen vacancies of CeO_(x),resulting in excellent nitrogen reduction reaction(NRR)performance.Additionally,the synergistic effects between MoO_(3) and CeO_(x)lead to a further improvement of the electrochemical performance.The as-prepared MoO_(3)-CeO_(x)catalyst shows an NH_(3) yield rate of 32.2 μg h^(-1) mg^(-1) cat and a faradaic efficiency of 7.04%at-0.75 V(vs.reversible hydrogen electrode)in 0.01 M Dulbecco’s Phosphate Buffered Saline.Moreover,it displays decent electrochemical stability over 30,000 s.Besides,the electrochemical NRR mechanism for MoO_(3)-CeO_(x)is investigated by in-situ Fourier transform infrared spectroscopy.N-H stretching,H-N-H bending,and N-N stretching are detected during the reaction,suggesting that an associative pathway is followed.This work provides an approach to designing and synthesizing potential electrocatalysts for NRR.展开更多
[Objectives]To explore the effects of different sterilization conditions on nutrition and flavor of apple vinegar.[Methods]Five kinds of high temperature short time(HTST)sterilization conditions were selected to treat...[Objectives]To explore the effects of different sterilization conditions on nutrition and flavor of apple vinegar.[Methods]Five kinds of high temperature short time(HTST)sterilization conditions were selected to treat apple vinegar,and the volatile aroma components and the content of active components in apple vinegar before and after sterilization were analyzed.[Results]Compared with the control,the contents of total acid and malic acid in the samples after sterilization changed little,but the contents of citric acid increased significantly(P<0.01),and the contents of total phenols,ascorbic acid and total flavonoids decreased.Ethyl acetate,isopentyl acetate,ethyl caprylate,phenethyl acetate,1-pentanol,phenylethyl alcohol,acetic acid,and sec-butyl ether were the characteristic aroma components which contributed to the flavor of apple vinegar.As sterilization temperature increased,the content of esters decreased,while the content of acids,alcohols and aldehydes increased.The contents of nutrition,active components and volatile aroma components in apple vinegar under 100℃and 30 s sterilization conditions had little change compared with other sterilization conditions,so 100℃and 30 s were the optimal sterilization conditions.[Conclusions]Under different sterilization conditions,the content of flavor components in apple vinegar will change greatly,which will affect the quality of apple vinegar.展开更多
Objective: To evaluate the effect of external fixation combined with vacuum sealing drainage on the trauma degree and bone metabolism in patients with open tibiofibula fracture. Methods:A total of 116 patients with op...Objective: To evaluate the effect of external fixation combined with vacuum sealing drainage on the trauma degree and bone metabolism in patients with open tibiofibula fracture. Methods:A total of 116 patients with open tibiofibula fracture who received surgical treatment in Luzhou People's Hospital between February 2015 and January 2017 were divided into control group (n=58) and study group (n=58) by random number table. Control group received debridement + external fixation, and study group received debridement + external fixation +vacuum sealing drainage. The differences in the levels of trauma indexes and bone metabolism indexes were compared between the two groups before and after treatment. Results: Before surgery, there was no statistically significant difference in serum levels of trauma indexes and bone metabolism indexes between the two groups. 1 week after surgery, serum acute phase protein Tf level of study group was higher than that of control group whereas CER, Hp and CRP levels were lower than those of control group;stress indexes NE and Cor levels were lower than those of control group;bone metabolism indexes P1NP, BGP and BALP levels were higher than those of control group whereas β-CTX level was lower than that of control group. Conclusion: External fixation combined with vacuum sealing drainage can effectively reduce fracture trauma and promote fracture end healing in patients with open tibiofibula fracture.展开更多
This paper presents a novel stiffness prediction method for periodic beam-like structures based on the two-scale equivalence at different strain states.The macroscopic fields are achieved within the framework of Timos...This paper presents a novel stiffness prediction method for periodic beam-like structures based on the two-scale equivalence at different strain states.The macroscopic fields are achieved within the framework of Timoshenko beam theory,while the microscopic fields are obtained by the newly constructed displacement form within the framework of three-dimensional(3D)elasticity theory.The new displacement form draws lessons from that in the asymptotic homogenization method(AHM),but the present field governing equations or boundary conditions for the first two order influence functions are constructed and very different from the way they were defined in the AHM.The constructed displacement form,composed of one homogenized and two warping terms,can accurately describe the deformation mode of beam-like structures.Then,with the new displacement form,the effective stiffness is achieved by the equivalence principle of macro-and microscopic fields.The finite element formulations of the proposed method are presented,which are easy to implement.Numerical examples validate that the present method can well predict both diagonal and coupling stiffness of periodic composite beams.展开更多
Metallic zinc is an ideal anode material owing to its high theoretical capacity(819 mAh·g^(-1)),ecofriendliness,low cost and high safety,which have driven fast development of Zn-ion batteries(ZIBs).However,the pr...Metallic zinc is an ideal anode material owing to its high theoretical capacity(819 mAh·g^(-1)),ecofriendliness,low cost and high safety,which have driven fast development of Zn-ion batteries(ZIBs).However,the practical application of current ZIBs is significantly restricted by irregular dendrite growth of zinc anode and the low working voltage(usually<2 V)of cathode materials.Herein,we report a high-voltage Zn-based dualion battery(DIB),which is constructed by a graphite cathode,a Zn anode,and 3 M LiPF_(6)in the ethyl methyl carbonate(EMC)electrolyte.Under the corrosion interaction of Li^(+)ions,Zn^(2+)can be easily dissolved from Zn anode into the electrolyte to enable dendrite-free Zn^(2+)plating/stripping at the anode.Moreover,an aqueous carboxymethyl cellulose(CMC)binder is employed to generate a robust cathode electrolyte interface(CEI)layer on the graphite cathode,which renders ultrafast PF_(6)^(-)-de-/intercalation into graphite.The resultant Zn-graphite DIB operates stably at a high cut off voltage of 3.2 V,corresponding to an average output voltage of 2.2 V.After 9000cycles at 5C,the high capacity retention of 95.9% can be achieved with~100% Coulomb efficiency.Based on the mass of cathode material,our Zn-graphite battery exhibits ultrafast rate capability(60 C,a discharge time of 44 s)and high energy/power densities(208 Wh·kg^(-1)at 214 W·kg^(-1);142 Wh·kg^(-1)at 8692 W·kg^(-1)),which holds great promise for large-scale energy storage.展开更多
In consideration of the abundant moisture of limonitic nickel laterite mined,it is essential to determine whether the selfpossessed moisture of limonitic nickel laterite after pre-dried is appropriate for sintering.Th...In consideration of the abundant moisture of limonitic nickel laterite mined,it is essential to determine whether the selfpossessed moisture of limonitic nickel laterite after pre-dried is appropriate for sintering.Thus,based on the characterization of limonitic nickel laterite,the influence of its self-possessed moisture on sintering performance was expounded by sinter pot tests and the relevant mechanism was revealed by the systematical analyses of the granulation properties of sinter mixture,thermodynamic conditions during sintering and mineralogy of product sinter.The results indicate that the selfpossessed moisture of limonitic nickel laterite indeed has significant infuence on its sintering performance.At the optimum self-possessed moisture of 21 mass%,sinter indices are relatively better with tumble index,productivity and solid fuel rate of 48.87%,1.04 t m^(-2) h^(-1)and 136.52 kg t^(-1),respectively,due to the superior granulation properties of sinter mixture and thermodynamic conditions during sintering,relatively large amount of silico-ferrite of calcium and alumina and tighter sinter microstructure.However,sintering performance of limonitic nickel laterite is still much poorer than that of ordinary iron ores.It is feasible to strengthen limonitic nickel laterite sintering by inhibiting the over-fast sintering speed and improving the thermodynamic conditions during sintering.展开更多
基金supported by Major scientific and technological projects of Xinjiang Production and Construction Corps(2017DB006 and 2020KWZ-012)。
文摘Walnut(Juglans regia L.)is a good source of lipids and polyunsaturated fatty acids(PUFAs).In order to explore the biosynthesis molecular mechanism of oil accumulation and fatty acid(FA)synthesis in walnut,the samples at different development periods of three walnut cultivars,’Zhipi’(ZP),’Xinwu 417’(W417)and’Xinwen 81’(W81)were collected for transcriptomic analysis.The analysis of oil accumulation and FA profiles showed that the oil content in mature walnut kernel was nearly 70%,and over 90%of FAs were PUFAs.We identified 126 candidate genes including 64 genes for FA de novo synthesis,45 genes for triacylglycerol assembly,and 17 genes for oil bodies involved in lipid biosynthesis by RNA-sequencing.Ten key enzymes including ACCase,LACS6,LACS8,SAD,FAD2,FAD3,LPAAT1,DGAT2,PDAT2,and PLC encoded by 19 genes were highly associated with lipid biosynthesis.Quantitative PCR analysis further validated 9 important genes,and the results were well consistent with our transcriptomic data.Finally,5 important transcription factors including WRI1,ABI3,FUS3,PKL and VAL1 were identified,and their main regulatory genes might contain ACCase,KASII,LACS,FAD3 and LPAAT which were determined through correlation analysis of expression levels for 27 walnut samples.These findings will provide a comprehensive understanding and valuable information on the genetic engineering and molecular breeding in walnut.
基金supported by the National Natural Science Foundation of China(82372535 to Ru-Lin Huang and 82361138568 to Qingfeng Li)the Shanghai Clinical Research Center of Plastic and Reconstructive Surgery supported by Science and Technology Commission of Shanghai Municipality(22MC1940300)the Shanghai Plastic Surgery Research Center of Shanghai Priority Research Center(2023ZZ02023)。
文摘Current organoid-generation strategies rely predominantly on intricate in vitro manipulations of dissociated stem cells,including isolation,expansion,and genetic modification.However,these approaches present significant challenges in terms of safety and scalability for clinical applications.An alternative strategy involves the direct generation of organoids from readily available tissues.Herein,we report the generation of functional organoids representing all three germ layers from human adult adipose tissue without single-cell processing steps.Specifically,by employing a specialized suspension culture system,we have developed reaggregated microfat(RMF)tissues,which differentiated into mesodermal bone marrow organoids capable of reconstituting human normal hematopoiesis in immunodeficient mice,endodermal insulin-producing organoids that reversed hyperglycemia in streptozotocin(STZ)-induced diabetic mice,and ectodermal nervous-like tissues resembling neurons and neuroglial cells.These findings therefore highlight the potential of human adipose tissue as a safe,scalable,and clinically viable source for organoid-based regenerative therapies.
基金supported by Kunming University of Science and Technology 2024 graduate course ideological and political case construction project(109920240103)Case construction project of AI-enabled postgraduate talent training in Kunming University of Technology,the Yunnan Fundamental Research Projects(202501AT070358 and 202401AU070142)+1 种基金the Scientific Research Fund Program of Yunnan Provincial Department of Education(2024J0078)Talent Cultivation Fund Project of Kunming University of Science and Technology(KKZ3202467041 and KKZ3202467045).
文摘In response to the three major contradictions,safety,cognition,and ability cultivation,existing in the practical teaching of geological hazard courses,this paper proposes a“virtual-real integration”teaching reform scheme,using earthquake disasters as an example.By integrating digital twin technology and artificial intelligence technology,a four-layer teaching framework consisting of data layer,model layer,platform layer,and intelligent layer is constructed.Progressive teaching segments of“cognition-simulation-decision-making”are designed to establish a comprehensive training path from seismic geological survey to disaster early warning and decision-making.This scheme shifts the traditional field practice venue to a safe virtual environment,promotes students’understanding of geological hazards from static fragments to dynamic processes,enhances their comprehensive decision-making ability in geological disaster prevention and mitigation,and provides theoretical support and practical guidance for cultivating interdisciplinary talents in geological hazard prevention.
基金support by Hong Kong RGC General Research Fund(16217824,16213825,16203923,and 16217824)National Natural Science Foundation of China(N_HKUST638/23)+1 种基金Research Grants Council Joint Research Scheme(62361166630)Guangdong Basic and Applied Basic Research Foundation(2023B1515130007).
文摘Human skin exhibits a remarkable capability to perceive contact forces and environmental temperatures,providing complex information that is essential for its subtle control.Despite recent advancements in soft tactile sensors,accurately decoupling signals—specifically separating forces from directional orientation and temperature—remains a challenge thus resulting in failure to meet the advanced application requirements of robots.This study proposes,F3T,a multilayer soft sensor unit designed to achieve isolated measurements and mathematical decoupling of normal pressure,omnidirectional tangential forces,and temperature.We developed a circular coaxial magnetic film featuring a floating mount multilayer capacitor that facilitated the physical decoupling of normal and tangential forces in all directions.Additionally,we incorporated an ion gel-based temperature-sensing film into the tactile sensor.The proposed sensor was resilient to external pressures and deformations,and could measure temperature and significantly eliminate capacitor errors induced by environmental temperature changes.In conclusion,our novel design allowed for the decoupled measurement of multiple signals,laying the foundation for advancements in high-level robotic motion control,autonomous decision-making,and task planning.
基金supported by the National Natural Science Foundation of China,Nos.81872845(to ML),81771625(to XF)the Natural Science Foundation of Jiangsu Province of China,No.BK20180207(to ML)+4 种基金Jiangsu Provincial Medical Youth Talent of China,No.QNRC2016762(to ML)the Pediatric Clinical Center of Suzhou City of China,No.Szzx201504(to XF)Postgraduate Research&Practice Innovation Program of Jiangsu Province of China,No.KYCX19_1998(to LLT)Jiangsu Government Scholarship for Overseas Studies of China,No.JS-2017-127(to ML)the Fifth Batch of Gusu Health Talent Plan of China(to ML).
文摘Our previous studies have demonstrated that TP53-induced glycolysis and apoptosis regulator(TIGAR)can protect neurons after cerebral ischemia/reperfusion.However,the role of TIGAR in neonatal hypoxic-ischemic brain damage(HIBD)remains unknown.In the present study,7-day-old Sprague-Dawley rat models of HIBD were established by permanent occlusion of the left common carotid artery followed by 2-hour hypoxia.At 6 days before induction of HIBD,a lentiviral vector containing short hairpin RNA of either TIGAR or gasdermin D(LV-sh_TIGAR or LV-sh_GSDMD)was injected into the left lateral ventricle and striatum.Highly aggressively proliferating immortalized(HAPI)microglial cell models of in vitro HIBD were established by 2-hour oxygen/glucose deprivation followed by 24-hour reoxygenation.Three days before in vitro HIBD induction,HAPI microglial cells were transfected with LV-sh_TIGAR or LV-sh_GSDMD.Our results showed that TIGAR expression was increased in the neonatal rat cortex after HIBD and in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation.Lentivirusmediated TIGAR knockdown in rats markedly worsened pyroptosis and brain damage after hypoxia/ischemia in vivo and in vitro.Application of exogenous nicotinamide adenine dinucleotide phosphate(NADPH)increased the NADPH level and the glutathione/oxidized glutathione ratio and decreased reactive oxygen species levels in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation.Additionally,exogenous NADPH blocked the effects of TIGAR knockdown in neonatal HIBD in vivo and in vitro.These findings show that TIGAR can inhibit microglial pyroptosis and play a protective role in neonatal HIBD.The study was approved by the Animal Ethics Committee of Soochow University of China(approval No.2017LW003)in 2017.
基金financially supported by the High Technology Research and Development Program of China (No. 2013AA031002)
文摘Abstract: Microstructural evolution in a new kind of aluminum (A1) alloy with the chemical composition of AI-8.82Zn-2.08Mg- 0.80Cu-3.31Sc-0.3Zr was investigated. It is found that the secondary phase MgZn2 is completely dissolved into the matrix during a short homogenization treatment (470℃, 1 h), while the primary phase A13(Sc,Zr) remains stable. This is due to Sc and Zr additions into the A1 al- loy, high Zn/Mg mass ratio, and low Cu content. The experimental findings fit well with the results calculated by the homogenization diffusion kinetics equation. The alloy shows an excellent mechanical performance after the short homogenization process followed by hot-extrusion and T6 treatment. Consequently, a good combination of low energy consumotion and favorable mechanical properties is obtained.
基金supported by the Zhejiang Province Key Research and Development Plan(2021C03152)Zhoushan Science and Technology Project(2021C21011)+1 种基金Industrial Project of Public Technology Research of Zhejiang Province Science and Technology Department(LGG18E040001)Scientific Research Project of Zhejiang Province Education Department(Y20173854)
文摘Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady operation of pipelines.In this research,a novel experimental device is designed to investigate the erosion characteristics of 304 stainless and L245 carbon steel in the gas-solid two-phase flow.Regarding the impacts on erosion rate,the typical factors such as gas velocity,impact angle,erosion time,particle material and target material are individually observed and comprehensive analyzed with the assistance of apparent morphology characterized via Scanning Electron Microscope.Experimental results show that the severest erosion occurs when the angle reaches approximate 30°whether eroded by type I or type II particles,which is observed in both two types of steel.Concretely,304 stainless steel and L245 carbon steel appear to be cut at low angles,and impacted at high angles to form erosion pits.In the steady operational state,the erosion rate is insensitive to the short erosion time and free from the influences caused by the“erosion latent period”.Based on the comparison between experimental data and numerical results generated by existing erosion models,a modified model with low tolerance(<3%),high feasibility and strong consistency is proposed to make an accurate prediction of the erosion in terms of two types of steel under various industrial conditions.
基金supported by the National Natural Science Foundation of China,No. 81801213 (to BP)Xuzhou Special Fund for Promoting Scientific and Technological Innovation,Nos. KC21177 (to BP),KC21195 (to HF)Science and Technology Project of Yili Kazak Autonomous Prefecture,No. YZ2019D006 (to HF)。
文摘Research has shown that long-chain noncoding RNAs(lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. c-Jun plays a key role in the repair of peripheral nerve injury. However, the precise underlying mechanism of c-Jun remains unclear. In this study, we performed microarray and bioinformatics analysis of mouse crush-injured sciatic nerves and found that the lncRNA Pvt1 was overexpressed in Schwann cells after peripheral nerve injury. Mechanistic studies revealed that Pvt1 increased c-Jun expression through sponging miRNA-214. We overexpressed Pvt1 in Schwann cells cultured in vitro and found that the proliferation and migration of Schwann cells were enhanced, and overexpression of miRNA-214 counteracted the effects of Pvt1 overexpression on Schwann cell proliferation and migration. We conducted in vivo analyses and injected Schwann cells overexpressing Pvt1 into injured sciatic nerves of mice. Schwann cells overexpressing Pvt1 enhanced the regeneration of injured sciatic nerves following peripheral nerve injury and the locomotor function of mice was improved. Our findings reveal the role of lncRNAs in the repair of peripheral nerve injury and highlight lncRNA Pvt1 as a novel potential treatment target for peripheral nerve injury.
基金the National Natural Science Foundation of China(Grant Nos.41905055 and 41721004)the Natural Science Foundation of Jiangsu Province(Grant No.BK20190500)the Fundamental Research Funds for the Central Universities(Grant No.B200202145).
文摘This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interannual timescales.The in-phase configuration of the WNPSH and EAJ is characterized by the westward(eastward)extension of the WNPSH and the southward(northward)shift of the EAJ,which is consistent with the general correspondence between their variations.The out-of-phase configuration includes the residual cases.We find that the in-phase configuration manifests itself as a typical meridional teleconnection.For instance,there is an anticyclonic(cyclonic)anomaly over the tropical western North Pacific and a cyclonic(anticyclonic)anomaly over the mid-latitudes of East Asia in the lower troposphere.These circulation anomalies are more conducive to rainfall anomalies over the Yangtze River basin and south Japan than are the individual WNPSH or EAJ.By contrast,for the out-of-phase configuration,the mid-latitude cyclonic(anticyclonic)anomaly is absent,and the lower-tropospheric circulation anomalies feature an anticyclonic(cyclonic)anomaly with a large meridional extension.Correspondingly,significant rainfall anomalies move northward to North China and the northern Korean Peninsula.Further results indicate that the out-of-phase configuration is associated with the developing phase of ENSO,with strong and significant sea surface temperature(SST)anomalies in the tropical central and eastern Pacific which occur simultaneously during summer and persist into the following winter.This is sharply different from the in-phase configuration,for which the tropical SSTs are not a necessity.
基金supported by the National Natural Science Foundation of China (Grant No. 41831175)the Fundamental Research Funds for the Central Universities (Grant No. B210201029)+2 种基金the Key Scientific and Technological Project of the Ministry of Water Resources, P. R. China (SKS2022001)the Joint Open Project of the KLME and CIC-FEMD (Grant No. KLME202202)the Open Research Fund of the State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences) (Grant No. LTO2110)
文摘Seasonal prediction of summer precipitation over eastern China is closely linked to the East Asian monsoon circulation,which is largely affected by the El Niño-Southern Oscillation(ENSO).In this study,results show that spring soil moisture(SM)over the Indo-China peninsula(ICP)could be a reliable seasonal predictor for eastern China summer precipitation under non-ENSO conditions.When springtime SM anomalies are present over the ICP,they trigger a structured response in summertime precipitation over most of eastern China.The resultant south-to-north,tri-polar configuration of precipitation anomalies has a tendency to yield increased(decreased)precipitation in the Yangtze River basin and decreased(increased)in South and North China with a drier(wetter)spring soil condition in the ICP.The analyses show that ENSO exerts a powerful control on the East Asian circulation system in the ENSO-decaying summer.In the case of ENSO forcing,the seasonal predictability of the ICP spring SM for eastern China summer precipitation is suppressed.However,in the absence of the influence of ENSO sea surface temperature anomalies from the preceding winter,the SM anomalies over the ICP induce abnormal local heating and a consequent geopotential height response owing to its sustained control on local temperature,which could,in turn,lead to abnormal eastern China summer precipitation by affecting the East Asian summer monsoon circulation.The present findings provide a better understanding of the complexity of summer climate predictability over eastern China,which is of potential significance for improving the livelihood of the people.
基金financial support from the National Natural Science Foundation of China (Grant No. 51401134)the Scientific Research Funding Project of Liaoning Education Department (Grant No. LG201924)+1 种基金the Australian Research Council (ARCDE180101030) during the course of this work。
文摘For the first time, we developed porous Pt-Ni alloying nanoparticles with predominant(111) facets under intense magnetic fields. Electrochemical analysis revealed that the Pt-Ni alloying nanoparticles obtained at 2 Tesla exhibited a superior catalytic activity and durability for oxygen reduction reaction. This work demonstrated that the imposition of intense magnetic field could be considered as a new approach for developing efficient alloying electrocatalysts with preferential facets.
基金supported by the National Science Foundation of China(grant no.21206099)
文摘To effectively solve the agglomeration problems in the solid state reaction process,pre-adding glucose is adopted to the synthesis of Li Fe PO4/C energy materials using Fe–P waste slag. The average particle grain size of Li FeP O4/C decreases,and the impurities in Li Fe PO4/C composites reduce to a great extent. It makes great sense to the mass industrial production. The optimum synthesis conditions determined in this work are based on the orthogonal experiments. The samples synthesized in a scale of 500 g exhibit high purity,excellent electrochemical performance,high reaction activity,good reversibility,and low polarization level.The discharge capacities are 145,134,117,and 102 m Ah/g at the current densities of 0.1 C,0.2 C,0.5 C and1 C,respectively. This work puts forward a practical suggestion for mass producing environmental benign and low cost Li FeP O4/C as cathode materials of lithium ion batteries.
基金supported by the National Basic Research Program of China (Grant Nos.2012CB955600 and 2015CB954300)the National Natural Science Foundation of China (Grant Nos. 41106010 and 41476003)+1 种基金the State Key Laboratory of Tropical Oceanography, Chinese Academy of Sciences (Grant Nos. LTO1206 and LTOZZ1202)a China Meteorological Public Welfare Science Research Project (Grant No. GYHY201306027)
文摘Using 20 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), the simulation of the Southwest Indian Ocean (SWIO) thermocline dome is evaluated and its role in shaping the Indian Ocean Basin (IOB) mode following E1 Nifio investigated. In most of the CMIP5 models, due to an easterly wind bias along the equator, the simulated SWIO thermocline is too deep, which could further influence the amplitude of the interannual IOB mode. A model with a shallow (deep) thermocline dome tends to simulate a strong (weak) IOB mode, including key attributes such as the SWIO SST warming, antisymmetric pattern during boreal spring, and second North Indian Ocean warming during boreal summer. Under global warming, the thermocline dome deepens with the easterly wind trend along the equator in most of the models. However, the IOB amplitude does not follow such a change of the SWIO thermocline among the models; rather, it follows future changes in both ENSO forcing and local convection feedback, suggesting a decreasing effect of the deepening SWIO thermocline dome on the change in the IOB mode in the future.
基金supported by Key Laboratory of Zoonosis Prevention and Control of Guangdong Province,the Guangdong Province Pig Industrial System Innovation Team(Grant Number 2018LM1103)the National Key Basic Research Program(Grant Number 2016YFD0500606)+1 种基金the Construction of the First Class Universities(Subject)and Special Development Guidance Special Fund(Grant Number K5174960)the Fundamental Research Funds for the Central Universities,SCUT(Grant Number D2170320)
文摘Porcine pegivirus(PPgV)is a member of the Pegivirus genus in the Flaviviridae family.PPg V is an emerging virus that has been discovered in swine herds in Germany,the United States,China,Poland,Italy,and the United Kingdom,indicating a wide geographical distribution.In this retrospective study,339 pig serum samples were collected from 20 different commercial swine farms located in nine cities in Guangdong Province,China,from 2016 to 2018,to investigate the prevalence and genetic diversity of PPg V in this geographical region.PPg V was detected in 55%(11/20)of the farms using nested reverse transcription PCR,with 6.2%(21/339)of pigs testing positive for PPg V.The yearly PPg V-positive rate increased from 2.6%to 7.5%between 2016 and 2018.Sequencing of PPg V-positive samples identified two complete polyprotein genes and seven partial NS5 B genes from different farms.Comparative analysis of the polyprotein genes revealed that PPg V sequences obtained in this study showed 87.4%–97.2%similarity at the nucleotide level and 96.5%–99.4%similarity at the amino acid level with the reference sequences.Sequence alignment and phylogenetic analysis of the complete polyprotein gene and partial NS5 B and NS3 genes demonstrated a high genetic similarity with the samples from the USA.The finding of the wide distribution of PPg V in swine herds in Guangdong Province will contribute to the understanding of the epidemiological characteristics and genetic evolution of PPg V in China.
基金financially supported by the National Key Research and Development Program of China(2017YFA0206500)NSFC(Grant Nos.21673198,91934303,21621091)。
文摘Developing efficient and low-cost electrocatalysts is essential for the electroreduction of N_(2) to NH_(3).Here,highly monodispersed MoO_(3) clusters loaded on a coral-like CeO_(x)compound with abundant oxygen vacancies are successfully prepared by an impregnation-reduction method.The MoO_(3) clusters with small sizes of 2.6±0.5 nm are induced and anchored by the oxygen vacancies of CeO_(x),resulting in excellent nitrogen reduction reaction(NRR)performance.Additionally,the synergistic effects between MoO_(3) and CeO_(x)lead to a further improvement of the electrochemical performance.The as-prepared MoO_(3)-CeO_(x)catalyst shows an NH_(3) yield rate of 32.2 μg h^(-1) mg^(-1) cat and a faradaic efficiency of 7.04%at-0.75 V(vs.reversible hydrogen electrode)in 0.01 M Dulbecco’s Phosphate Buffered Saline.Moreover,it displays decent electrochemical stability over 30,000 s.Besides,the electrochemical NRR mechanism for MoO_(3)-CeO_(x)is investigated by in-situ Fourier transform infrared spectroscopy.N-H stretching,H-N-H bending,and N-N stretching are detected during the reaction,suggesting that an associative pathway is followed.This work provides an approach to designing and synthesizing potential electrocatalysts for NRR.
基金Supported by Taishan Industrial Leading Talent Project (Efficient Ecological Agriculture Innovation) (LJNY202001)Science and Technology R&D Project of Longkou City in Shandong Province (2021KJJH028)Science and Technology Small and Medium-sized Enterprises Innovation Capability Improvement Project in Shandong Province (2023 TS GC0906).
文摘[Objectives]To explore the effects of different sterilization conditions on nutrition and flavor of apple vinegar.[Methods]Five kinds of high temperature short time(HTST)sterilization conditions were selected to treat apple vinegar,and the volatile aroma components and the content of active components in apple vinegar before and after sterilization were analyzed.[Results]Compared with the control,the contents of total acid and malic acid in the samples after sterilization changed little,but the contents of citric acid increased significantly(P<0.01),and the contents of total phenols,ascorbic acid and total flavonoids decreased.Ethyl acetate,isopentyl acetate,ethyl caprylate,phenethyl acetate,1-pentanol,phenylethyl alcohol,acetic acid,and sec-butyl ether were the characteristic aroma components which contributed to the flavor of apple vinegar.As sterilization temperature increased,the content of esters decreased,while the content of acids,alcohols and aldehydes increased.The contents of nutrition,active components and volatile aroma components in apple vinegar under 100℃and 30 s sterilization conditions had little change compared with other sterilization conditions,so 100℃and 30 s were the optimal sterilization conditions.[Conclusions]Under different sterilization conditions,the content of flavor components in apple vinegar will change greatly,which will affect the quality of apple vinegar.
文摘Objective: To evaluate the effect of external fixation combined with vacuum sealing drainage on the trauma degree and bone metabolism in patients with open tibiofibula fracture. Methods:A total of 116 patients with open tibiofibula fracture who received surgical treatment in Luzhou People's Hospital between February 2015 and January 2017 were divided into control group (n=58) and study group (n=58) by random number table. Control group received debridement + external fixation, and study group received debridement + external fixation +vacuum sealing drainage. The differences in the levels of trauma indexes and bone metabolism indexes were compared between the two groups before and after treatment. Results: Before surgery, there was no statistically significant difference in serum levels of trauma indexes and bone metabolism indexes between the two groups. 1 week after surgery, serum acute phase protein Tf level of study group was higher than that of control group whereas CER, Hp and CRP levels were lower than those of control group;stress indexes NE and Cor levels were lower than those of control group;bone metabolism indexes P1NP, BGP and BALP levels were higher than those of control group whereas β-CTX level was lower than that of control group. Conclusion: External fixation combined with vacuum sealing drainage can effectively reduce fracture trauma and promote fracture end healing in patients with open tibiofibula fracture.
基金supported by the China Postdoctoral Science Foundation(Grant No.2021T140040)the National Natural Science Foundation of China(Grant Nos.12002019 and 11872090).
文摘This paper presents a novel stiffness prediction method for periodic beam-like structures based on the two-scale equivalence at different strain states.The macroscopic fields are achieved within the framework of Timoshenko beam theory,while the microscopic fields are obtained by the newly constructed displacement form within the framework of three-dimensional(3D)elasticity theory.The new displacement form draws lessons from that in the asymptotic homogenization method(AHM),but the present field governing equations or boundary conditions for the first two order influence functions are constructed and very different from the way they were defined in the AHM.The constructed displacement form,composed of one homogenized and two warping terms,can accurately describe the deformation mode of beam-like structures.Then,with the new displacement form,the effective stiffness is achieved by the equivalence principle of macro-and microscopic fields.The finite element formulations of the proposed method are presented,which are easy to implement.Numerical examples validate that the present method can well predict both diagonal and coupling stiffness of periodic composite beams.
基金financially supported by the National Natural Science Foundation of China(No.22279122)Shenzhen Science and Technology Program(No.JCYJ20220530162402005)+2 种基金the Research on High Power Flexible Battery in All Sea Depth(2020-XXXX-XX-246-00)the Research Fund Program of Hubei Key Laboratory of Resources and EcoEnvironment Geology(No.HBREGKFJJ-202314)and the Fundamental Research Funds for the Central Universities,South-Central Minzu University(No.CZQ21013)。
文摘Metallic zinc is an ideal anode material owing to its high theoretical capacity(819 mAh·g^(-1)),ecofriendliness,low cost and high safety,which have driven fast development of Zn-ion batteries(ZIBs).However,the practical application of current ZIBs is significantly restricted by irregular dendrite growth of zinc anode and the low working voltage(usually<2 V)of cathode materials.Herein,we report a high-voltage Zn-based dualion battery(DIB),which is constructed by a graphite cathode,a Zn anode,and 3 M LiPF_(6)in the ethyl methyl carbonate(EMC)electrolyte.Under the corrosion interaction of Li^(+)ions,Zn^(2+)can be easily dissolved from Zn anode into the electrolyte to enable dendrite-free Zn^(2+)plating/stripping at the anode.Moreover,an aqueous carboxymethyl cellulose(CMC)binder is employed to generate a robust cathode electrolyte interface(CEI)layer on the graphite cathode,which renders ultrafast PF_(6)^(-)-de-/intercalation into graphite.The resultant Zn-graphite DIB operates stably at a high cut off voltage of 3.2 V,corresponding to an average output voltage of 2.2 V.After 9000cycles at 5C,the high capacity retention of 95.9% can be achieved with~100% Coulomb efficiency.Based on the mass of cathode material,our Zn-graphite battery exhibits ultrafast rate capability(60 C,a discharge time of 44 s)and high energy/power densities(208 Wh·kg^(-1)at 214 W·kg^(-1);142 Wh·kg^(-1)at 8692 W·kg^(-1)),which holds great promise for large-scale energy storage.
基金Project of Master Alloy Manufacture for Heat Resistant Stainiess Steel Production(No.AA18242003)funded by the Provincial Govermment of Guangxi Zhuang Autonomous District is sincerely acknowledged。
文摘In consideration of the abundant moisture of limonitic nickel laterite mined,it is essential to determine whether the selfpossessed moisture of limonitic nickel laterite after pre-dried is appropriate for sintering.Thus,based on the characterization of limonitic nickel laterite,the influence of its self-possessed moisture on sintering performance was expounded by sinter pot tests and the relevant mechanism was revealed by the systematical analyses of the granulation properties of sinter mixture,thermodynamic conditions during sintering and mineralogy of product sinter.The results indicate that the selfpossessed moisture of limonitic nickel laterite indeed has significant infuence on its sintering performance.At the optimum self-possessed moisture of 21 mass%,sinter indices are relatively better with tumble index,productivity and solid fuel rate of 48.87%,1.04 t m^(-2) h^(-1)and 136.52 kg t^(-1),respectively,due to the superior granulation properties of sinter mixture and thermodynamic conditions during sintering,relatively large amount of silico-ferrite of calcium and alumina and tighter sinter microstructure.However,sintering performance of limonitic nickel laterite is still much poorer than that of ordinary iron ores.It is feasible to strengthen limonitic nickel laterite sintering by inhibiting the over-fast sintering speed and improving the thermodynamic conditions during sintering.