儿茶素和茶黄素作为红茶的主要活性成分对红茶的色、香、味等品质呈现起到重要作用,也是评价红茶品质优劣的重要指标。该研究基于高效液相色谱技术,开发了可同时、快速、准确检测红茶中儿茶素和茶黄素的分析方法。以A相0.1%甲酸-乙腈、B...儿茶素和茶黄素作为红茶的主要活性成分对红茶的色、香、味等品质呈现起到重要作用,也是评价红茶品质优劣的重要指标。该研究基于高效液相色谱技术,开发了可同时、快速、准确检测红茶中儿茶素和茶黄素的分析方法。以A相0.1%甲酸-乙腈、B相0.1%甲酸-水为流动相,进样量20μL,经安捷伦SB-C;色谱柱(4.6 mm×250 mm, 5μm)分离,在柱温30℃、流速1 mL/min、时间50 min的条件下进行检测,使用外标法定量检测样品含量。结果显示,该方法具有较高的灵敏度(LOD:0.21~11.13μg/mL),质量浓度范围内与其峰面积的线性关系良好(R^(2)≥0.999 0),精密度、重复性和稳定性试验的相对标准偏差(relative standard deviation, RSD)均<5%(n=6),加标平均回收率为98.69%~104.77%,RSD均<3.31%(n=6)。该方法简便、高效、准确,可用于茶叶中儿茶素和茶黄素的定性定量测定。展开更多
With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A mag...With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication.展开更多
Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic v...Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic vortices(PVs)on chips,and active manipulation as well as multiplexing in more channels have become a pressing demand.In this work,we demonstrate a terahertz(THz)cascaded metadevice composed of a helical plasmonic metasurface,a liquid crystal(LC)layer,and a helical dielectric metasurface.By spin-orbital angular momentum coupling and photon state superposition,PVs and FVs are generated with mode purity of over 85%on average.Due to the inversion asymmetric design of the helical metasurfaces,the parity symmetry breaking of OAM is realized(the topological charge numbers no longer occur in positive and negative pairs,but all are positive),generating 6 independent channels associated with the decoupled spin states and the near-/far-field positions.Moreover,by the LC integration,dynamic mode switching and energy distribution can be realized,finally obtaining up to 12 modes with a modulation ratio of above 70%.This active tuning and multi-channel multiplexing metadevice establishes a bridge connection between the PVs and FVs,exhibiting promising applications in THz communication,intelligent perception,and information processing.展开更多
Zirconium alloys are critical materials in nuclear engineering due to their exceptional irradiation resistance and corrosion stability.However,prolonged exposure to extreme operational environments,including a high ra...Zirconium alloys are critical materials in nuclear engineering due to their exceptional irradiation resistance and corrosion stability.However,prolonged exposure to extreme operational environments,including a high radiation,mechanical stress,and corrosive media,induces surface degradation mechanisms including stress corrosion cracking and erosion from impurity particle impacts,necessitating advanced surface treatments to improve hardness and corrosion resistance.We explore the application of laser shock peening(LSP)to enhance the surface properties of the Zr4 alloy.Experimental analyses reveal substantial microstructural modifications upon the LSP.The surface grain refinement achieved a maximum reduction of 52.7%in average grain size(from 22.88 to 10.8μm^(2)),accompanied by an increase of 59%in hardness(204 to 326 HV).Additionally,a compressive residual stress layer(approximately-100 MPa)was generated on the treated surface,which reduces the risk of stress corrosion cracking.To elucidate the mechanistic basis of these improvements,a multiscale computational framework was developed,integrating finite-element models for macroscale stress field evolution and molecular dynamics simulations for nanoscale dislocation dynamics.By incorporating the strain rate as a critical variable,this framework bridges microstructure evolution with macroscopic mechanical enhancements.The simulations not only elucidated the dynamic interplay between shockwave-induced plastic deformation and property improvements but also exhibited a good consistency with experimental residual stress profiles.Notably,we propose the application of strain rate-driven multiscale modeling in LSP research for Zr alloys,providing a predictive method to optimize laser parameters for a tailored surface strengthening.This study not only confirms that LSP is a feasible strategy capable of effectively enhancing the comprehensive surface properties of Zr alloys and extending their service life in nuclear environments,but also provides a reliable simulation methodology in the field of laser surface engineering of alloy materials.展开更多
文摘儿茶素和茶黄素作为红茶的主要活性成分对红茶的色、香、味等品质呈现起到重要作用,也是评价红茶品质优劣的重要指标。该研究基于高效液相色谱技术,开发了可同时、快速、准确检测红茶中儿茶素和茶黄素的分析方法。以A相0.1%甲酸-乙腈、B相0.1%甲酸-水为流动相,进样量20μL,经安捷伦SB-C;色谱柱(4.6 mm×250 mm, 5μm)分离,在柱温30℃、流速1 mL/min、时间50 min的条件下进行检测,使用外标法定量检测样品含量。结果显示,该方法具有较高的灵敏度(LOD:0.21~11.13μg/mL),质量浓度范围内与其峰面积的线性关系良好(R^(2)≥0.999 0),精密度、重复性和稳定性试验的相对标准偏差(relative standard deviation, RSD)均<5%(n=6),加标平均回收率为98.69%~104.77%,RSD均<3.31%(n=6)。该方法简便、高效、准确,可用于茶叶中儿茶素和茶黄素的定性定量测定。
基金supported by the National Natural Science Foun-dation of China(Grant Nos.62371258,62335012,62205160,and 62435010)the Tianjin Youth Science and Technology Talent Project(Grant No.QN20230227)+1 种基金the Natural Science Foundation of Tianjin(Grant No.24JCYBJC01860)the Fundamental Research Funds for the Central Universities,Nan-kai University(Grant No.075-63253215).
文摘With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication.
基金supported by the National Natural Science Foundation of China(62335012,62371258,624B2075,62205160,62435010)Young Scientific and Technological Talents in Tianjin(QN20230227)Fundamental Research Funds for the Central Universities,Nankai University(63231159).
文摘Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic vortices(PVs)on chips,and active manipulation as well as multiplexing in more channels have become a pressing demand.In this work,we demonstrate a terahertz(THz)cascaded metadevice composed of a helical plasmonic metasurface,a liquid crystal(LC)layer,and a helical dielectric metasurface.By spin-orbital angular momentum coupling and photon state superposition,PVs and FVs are generated with mode purity of over 85%on average.Due to the inversion asymmetric design of the helical metasurfaces,the parity symmetry breaking of OAM is realized(the topological charge numbers no longer occur in positive and negative pairs,but all are positive),generating 6 independent channels associated with the decoupled spin states and the near-/far-field positions.Moreover,by the LC integration,dynamic mode switching and energy distribution can be realized,finally obtaining up to 12 modes with a modulation ratio of above 70%.This active tuning and multi-channel multiplexing metadevice establishes a bridge connection between the PVs and FVs,exhibiting promising applications in THz communication,intelligent perception,and information processing.
基金Supported by National Key Research and Development Program of China(Grant No.2023YFB4603803)National Natural Science Foundation of China(Grant No.12374295).
文摘Zirconium alloys are critical materials in nuclear engineering due to their exceptional irradiation resistance and corrosion stability.However,prolonged exposure to extreme operational environments,including a high radiation,mechanical stress,and corrosive media,induces surface degradation mechanisms including stress corrosion cracking and erosion from impurity particle impacts,necessitating advanced surface treatments to improve hardness and corrosion resistance.We explore the application of laser shock peening(LSP)to enhance the surface properties of the Zr4 alloy.Experimental analyses reveal substantial microstructural modifications upon the LSP.The surface grain refinement achieved a maximum reduction of 52.7%in average grain size(from 22.88 to 10.8μm^(2)),accompanied by an increase of 59%in hardness(204 to 326 HV).Additionally,a compressive residual stress layer(approximately-100 MPa)was generated on the treated surface,which reduces the risk of stress corrosion cracking.To elucidate the mechanistic basis of these improvements,a multiscale computational framework was developed,integrating finite-element models for macroscale stress field evolution and molecular dynamics simulations for nanoscale dislocation dynamics.By incorporating the strain rate as a critical variable,this framework bridges microstructure evolution with macroscopic mechanical enhancements.The simulations not only elucidated the dynamic interplay between shockwave-induced plastic deformation and property improvements but also exhibited a good consistency with experimental residual stress profiles.Notably,we propose the application of strain rate-driven multiscale modeling in LSP research for Zr alloys,providing a predictive method to optimize laser parameters for a tailored surface strengthening.This study not only confirms that LSP is a feasible strategy capable of effectively enhancing the comprehensive surface properties of Zr alloys and extending their service life in nuclear environments,but also provides a reliable simulation methodology in the field of laser surface engineering of alloy materials.