With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A mag...With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication.展开更多
Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic v...Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic vortices(PVs)on chips,and active manipulation as well as multiplexing in more channels have become a pressing demand.In this work,we demonstrate a terahertz(THz)cascaded metadevice composed of a helical plasmonic metasurface,a liquid crystal(LC)layer,and a helical dielectric metasurface.By spin-orbital angular momentum coupling and photon state superposition,PVs and FVs are generated with mode purity of over 85%on average.Due to the inversion asymmetric design of the helical metasurfaces,the parity symmetry breaking of OAM is realized(the topological charge numbers no longer occur in positive and negative pairs,but all are positive),generating 6 independent channels associated with the decoupled spin states and the near-/far-field positions.Moreover,by the LC integration,dynamic mode switching and energy distribution can be realized,finally obtaining up to 12 modes with a modulation ratio of above 70%.This active tuning and multi-channel multiplexing metadevice establishes a bridge connection between the PVs and FVs,exhibiting promising applications in THz communication,intelligent perception,and information processing.展开更多
Zirconium alloys are critical materials in nuclear engineering due to their exceptional irradiation resistance and corrosion stability.However,prolonged exposure to extreme operational environments,including a high ra...Zirconium alloys are critical materials in nuclear engineering due to their exceptional irradiation resistance and corrosion stability.However,prolonged exposure to extreme operational environments,including a high radiation,mechanical stress,and corrosive media,induces surface degradation mechanisms including stress corrosion cracking and erosion from impurity particle impacts,necessitating advanced surface treatments to improve hardness and corrosion resistance.We explore the application of laser shock peening(LSP)to enhance the surface properties of the Zr4 alloy.Experimental analyses reveal substantial microstructural modifications upon the LSP.The surface grain refinement achieved a maximum reduction of 52.7%in average grain size(from 22.88 to 10.8μm^(2)),accompanied by an increase of 59%in hardness(204 to 326 HV).Additionally,a compressive residual stress layer(approximately-100 MPa)was generated on the treated surface,which reduces the risk of stress corrosion cracking.To elucidate the mechanistic basis of these improvements,a multiscale computational framework was developed,integrating finite-element models for macroscale stress field evolution and molecular dynamics simulations for nanoscale dislocation dynamics.By incorporating the strain rate as a critical variable,this framework bridges microstructure evolution with macroscopic mechanical enhancements.The simulations not only elucidated the dynamic interplay between shockwave-induced plastic deformation and property improvements but also exhibited a good consistency with experimental residual stress profiles.Notably,we propose the application of strain rate-driven multiscale modeling in LSP research for Zr alloys,providing a predictive method to optimize laser parameters for a tailored surface strengthening.This study not only confirms that LSP is a feasible strategy capable of effectively enhancing the comprehensive surface properties of Zr alloys and extending their service life in nuclear environments,but also provides a reliable simulation methodology in the field of laser surface engineering of alloy materials.展开更多
针对智能网联环境下传感器感知和车车通信(vehicle to vehicle,V2V)都存在时延的问题,提出一种考虑双时延和多前车反馈(dual delay multiple look-ahead full velocity difference,DD-MLFVD)的智能网联汽车跟驰模型.根据智能网联汽车感...针对智能网联环境下传感器感知和车车通信(vehicle to vehicle,V2V)都存在时延的问题,提出一种考虑双时延和多前车反馈(dual delay multiple look-ahead full velocity difference,DD-MLFVD)的智能网联汽车跟驰模型.根据智能网联汽车感知特性引入双时延信息,结合多前车速度差和期望速度信息提出DD-MLFVD模型.通过微小扰动法求解DD-MLFVD模型的临界稳定性条件,同时结合模型参数研究前车数量和时延大小对模型稳定域的影响.利用直道场景对模型进行仿真分析,着重研究变扰动和变时延场景下DD-MLFVD对交通流的稳定效果.结果表明:面对复杂扰动影响,DD-MLFVD模型能够较好吸收扰动,可提升交通流的稳定性.展开更多
基金supported by the National Natural Science Foun-dation of China(Grant Nos.62371258,62335012,62205160,and 62435010)the Tianjin Youth Science and Technology Talent Project(Grant No.QN20230227)+1 种基金the Natural Science Foundation of Tianjin(Grant No.24JCYBJC01860)the Fundamental Research Funds for the Central Universities,Nan-kai University(Grant No.075-63253215).
文摘With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication.
基金supported by the National Natural Science Foundation of China(62335012,62371258,624B2075,62205160,62435010)Young Scientific and Technological Talents in Tianjin(QN20230227)Fundamental Research Funds for the Central Universities,Nankai University(63231159).
文摘Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic vortices(PVs)on chips,and active manipulation as well as multiplexing in more channels have become a pressing demand.In this work,we demonstrate a terahertz(THz)cascaded metadevice composed of a helical plasmonic metasurface,a liquid crystal(LC)layer,and a helical dielectric metasurface.By spin-orbital angular momentum coupling and photon state superposition,PVs and FVs are generated with mode purity of over 85%on average.Due to the inversion asymmetric design of the helical metasurfaces,the parity symmetry breaking of OAM is realized(the topological charge numbers no longer occur in positive and negative pairs,but all are positive),generating 6 independent channels associated with the decoupled spin states and the near-/far-field positions.Moreover,by the LC integration,dynamic mode switching and energy distribution can be realized,finally obtaining up to 12 modes with a modulation ratio of above 70%.This active tuning and multi-channel multiplexing metadevice establishes a bridge connection between the PVs and FVs,exhibiting promising applications in THz communication,intelligent perception,and information processing.
基金Supported by National Key Research and Development Program of China(Grant No.2023YFB4603803)National Natural Science Foundation of China(Grant No.12374295).
文摘Zirconium alloys are critical materials in nuclear engineering due to their exceptional irradiation resistance and corrosion stability.However,prolonged exposure to extreme operational environments,including a high radiation,mechanical stress,and corrosive media,induces surface degradation mechanisms including stress corrosion cracking and erosion from impurity particle impacts,necessitating advanced surface treatments to improve hardness and corrosion resistance.We explore the application of laser shock peening(LSP)to enhance the surface properties of the Zr4 alloy.Experimental analyses reveal substantial microstructural modifications upon the LSP.The surface grain refinement achieved a maximum reduction of 52.7%in average grain size(from 22.88 to 10.8μm^(2)),accompanied by an increase of 59%in hardness(204 to 326 HV).Additionally,a compressive residual stress layer(approximately-100 MPa)was generated on the treated surface,which reduces the risk of stress corrosion cracking.To elucidate the mechanistic basis of these improvements,a multiscale computational framework was developed,integrating finite-element models for macroscale stress field evolution and molecular dynamics simulations for nanoscale dislocation dynamics.By incorporating the strain rate as a critical variable,this framework bridges microstructure evolution with macroscopic mechanical enhancements.The simulations not only elucidated the dynamic interplay between shockwave-induced plastic deformation and property improvements but also exhibited a good consistency with experimental residual stress profiles.Notably,we propose the application of strain rate-driven multiscale modeling in LSP research for Zr alloys,providing a predictive method to optimize laser parameters for a tailored surface strengthening.This study not only confirms that LSP is a feasible strategy capable of effectively enhancing the comprehensive surface properties of Zr alloys and extending their service life in nuclear environments,but also provides a reliable simulation methodology in the field of laser surface engineering of alloy materials.
文摘针对智能网联环境下传感器感知和车车通信(vehicle to vehicle,V2V)都存在时延的问题,提出一种考虑双时延和多前车反馈(dual delay multiple look-ahead full velocity difference,DD-MLFVD)的智能网联汽车跟驰模型.根据智能网联汽车感知特性引入双时延信息,结合多前车速度差和期望速度信息提出DD-MLFVD模型.通过微小扰动法求解DD-MLFVD模型的临界稳定性条件,同时结合模型参数研究前车数量和时延大小对模型稳定域的影响.利用直道场景对模型进行仿真分析,着重研究变扰动和变时延场景下DD-MLFVD对交通流的稳定效果.结果表明:面对复杂扰动影响,DD-MLFVD模型能够较好吸收扰动,可提升交通流的稳定性.