期刊文献+

Port-Hamiltonian Based Control of the Sun-Earth 3D Circular Restricted Three-Body Problem: Stabilization of the <i>L</i><sub>1</sub>Lagrange Point

Port-Hamiltonian Based Control of the Sun-Earth 3D Circular Restricted Three-Body Problem: Stabilization of the <i>L</i><sub>1</sub>Lagrange Point
在线阅读 下载PDF
导出
摘要 In this paper, we use Port-Hamiltonian framework to stabilize the Lagrange <span style="font-family:Verdana;">points in the Sun-Earth three-dimensional Circular Restricted Three-Body Problem (CRTBP). Through rewriting the CRTBP into Port-Hamiltonian framework, we are allowed to design the feedback controller through ener</span><span style="font-family:Verdana;">gy-shaping and dissipation injection. The closed-loop Hamiltonian is </span><span style="font-family:Verdana;">a candidate of the Lyapunov function to establish nonlinear stability of the designed equilibrium, which enlarges the application region of feedback controller compared with that based on linearized dynamics. Results show that th</span><span style="font-family:Verdana;">e Port-Hamiltonian</span><span style="font-family:Verdana;"> a</span><span style="font-family:Verdana;">pproach allows us to successfully stabilize the Lagrange points, where the Linear Quadratic Regulator (LQR) may fail. The feedback </span><span style="font-family:Verdana;">system based on Port-Hamiltonian approach is also robust against whit</span><span style="font-family:Verdana;">e noise in the inputs.</span> In this paper, we use Port-Hamiltonian framework to stabilize the Lagrange <span style="font-family:Verdana;">points in the Sun-Earth three-dimensional Circular Restricted Three-Body Problem (CRTBP). Through rewriting the CRTBP into Port-Hamiltonian framework, we are allowed to design the feedback controller through ener</span><span style="font-family:Verdana;">gy-shaping and dissipation injection. The closed-loop Hamiltonian is </span><span style="font-family:Verdana;">a candidate of the Lyapunov function to establish nonlinear stability of the designed equilibrium, which enlarges the application region of feedback controller compared with that based on linearized dynamics. Results show that th</span><span style="font-family:Verdana;">e Port-Hamiltonian</span><span style="font-family:Verdana;"> a</span><span style="font-family:Verdana;">pproach allows us to successfully stabilize the Lagrange points, where the Linear Quadratic Regulator (LQR) may fail. The feedback </span><span style="font-family:Verdana;">system based on Port-Hamiltonian approach is also robust against whit</span><span style="font-family:Verdana;">e noise in the inputs.</span>
作者 Haotian Yan Haotian Yan(Community School of Naples, Virginia, USA)
出处 《Modern Mechanical Engineering》 2020年第3期39-49,共11页 现代机械工程(英文)
关键词 Port-Hamiltonian Lagrange Points Circular Restricted Three-Body Problem (CRTBP) Linear Quadratic Regulator (LQR) Port-Hamiltonian Lagrange Points Circular Restricted Three-Body Problem (CRTBP) Linear Quadratic Regulator (LQR)
  • 相关文献

参考文献1

二级参考文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部