期刊文献+

独立高容量半色调图像信息隐藏算法

Independent High-Capacity Halftone Image Information Hiding Algorithm
在线阅读 下载PDF
导出
摘要 为了解决Shamir(t, n)门限方案在秘密共享时,未能充分利用多项式系数和共享份额的问题,本文设计了一种独立高容量半色调图像信息隐藏算法。利用多项式的常数项和一次项系数隐藏秘密图像,共享份额隐藏份额编号或者用户信息等单个共享份额信息。利用二次项系数隐藏版权信息或者防伪信息。单个共享份额和达到门限数量的多个共享份额都可以进行认证。实验表明,该算法可分离秘密图像和多个共享份额的信息,实现多种信息的可逆隐藏,并且利用单个份额隐藏单个份额的特有信息。该算法增加了信息的种类和嵌入容量。对于Shamir(3, 5)门限共享,嵌入率可以达到3.5 bpp。In order to solve the problem of Shamir(t, n) threshold scheme not fully utilizing polynomial coefficients and shared shares during secret sharing, an independent high-capacity halftone image information hiding algorithm was designed in this paper. Using the constant term and first-order coefficient of polynomials to hide secret images, sharing shares to hide individual shared share information, such as share numbers or user information. Using quadratic coefficients to hide copyright or anti-counterfeiting information. Single shared shares and multiple shared shares that reach the threshold can be authenticated. Experiments have shown that this algorithm can separate secret images and information from multiple shared shares, achieve reversible hiding of multiple types of information, and utilize a single share to hide unique information of a single share. This algorithm increases the variety and embedding capacity of information. For Shamir(3, 5) threshold sharing, the embedding rate can reach 3.5 bpp.
出处 《软件工程与应用》 2024年第4期461-474,共14页 Software Engineering and Applications
  • 相关文献

参考文献6

二级参考文献40

  • 1吴燕仙,何妮.拉格朗日插值公式的完全展开[J].通化师范学院学报,2007,28(2):10-12. 被引量:6
  • 2(芬兰)[A.萨洛马](ArtoSalomaa)著,丁存生,单炜娟.公钥密码学[M]国防工业出版社,1998.
  • 3SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612-613.
  • 4BLAKLEY G R. Safeguarding cryptographic keys[A]. Managing Requirements Knowledge, International Workshop[C]. IEEE Com- puter Society, 1979.313-313.
  • 5CHOR B, GOLDWASSER S, MICALI S, et al. Verifiable secret shar- ing and achieving simultaneity in the presence of faults[A]. 2013 IEEE 54th Atmual Symposium on Foundations of Computer Science[C]. 1985. 383-395.
  • 6KAYA K, SEL(UK A A. A verifiable secret sharing scheme based on the Chinese remainder theorem[A]. Progress in Cryptology- IN- DOCRYPT 2008[C]. Springer Berlin Heidelberg, 2008. 414-425.
  • 7LU Q, XIONG Y, HUANG W, et aL A distributed ECC-DSS authenti- cation scheme based on CRT-VSS and trusted computing in MANET[A]. Trust, Security and Privacy in Computing and Commu- nications (TrustCom), 2012 IEEE l lth International Conference[C]. 2012.656-665.
  • 8KAYA K, SELCUK A A. A verifiable secret sharing scheme based on the chinese remainder theorem[A]. Progress in Cryptology-INDOCRYPT 2008[C]. Springer Berlin Heidelberg, 2008.414-425.
  • 9HARN L, FUYOU M, CHANG C C. Verifiable secret sharing based on the Chinese remainder theorem[J]. Security and Communication Networks, 2014, 7(6): 950-957.
  • 10ZHANG L, GUO F, LIU S, et al. A verifiable multi-secret sharing scheme based on LUC cryptosystem[A]. Consumer Electronics, Communications and Networks (CECNet), 2011 International Con- ference on IEEE[C]. 2011.2905-2908.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部