期刊文献+

基于改进免疫算法的两级径向基函数网络学习方法 被引量:1

A Two-Level Radial Basis Function Learning Method Based on Improved Immune Algorithm
在线阅读 下载PDF
导出
摘要 结合改进的免疫算法和最小二乘法,提出了一种设计径向基函数(RBF)网络的两级学习方法.该方法利用免疫算法确定RBF网络隐层的非线性参数,能够有效克服进化算法的未成熟收敛现象.改进的免疫算法针对RBF网络的特点,采用基于矢量距离的亲和度计算方法,克服了原有基于信息熵计算方法存在的计算复杂、参数难于确定的缺陷.将这种方法设计的RBF网络用于Mackey-Glass混沌序列预测的仿真实验证明了该方法的有效性. A two-level learning method combining improved immune algorithm and least square method was proposed to design a radial basis function (RBF) network. In this method, the nonlinear parameters of RBF hidden layer are determined by an immune algorithm, which can effectively overcome the immature problem in the evolutionary algorithm. According to the characteristic of RBF network, an affinity computation based on vector distance is used in this improved immune algorithm, which overcomes the flaw of the original entropy-based computation method, such as the problems in computation complexity and parameter determination. The application of the RBF network in Mackey-Glass time series prediction problem demonstrates the effectiveness of the proposed training algorithm.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第5期768-770,774,共4页 Journal of Shanghai Jiaotong University
关键词 径向基函数网络 免疫算法 最小二乘法 radial basis function (RBF) network immune algorithm least square method
  • 相关文献

参考文献5

  • 1Chen S,Wu Y,Luk B L.Combined genetic algorithm optimization and rgularized orthogonal least squares learning for radial basis function networks[J].IEEE Transactions on Neural Networks,1999,10(5):1239- 1243.
  • 2Yao Xin.Evolving artifical neural networks [J].Proceedings of the IEEE,1999,87(9):1423- 1447.
  • 3Chun Jang-Sung,Kim Min-Kyu,Jung Hyun-Kyo.Shape optimization of electromagnetic devices using immune algorithm [J].IEEE Transactions on Magnetics,1997,33 (2):1876 - 1879.
  • 4Chen S,Cowan C F N,Grant P M.Orthogonal least squares learning algorithms for radial basis function networks [J].IEEE Trans on Neural Networks,1991,2(2):302- 309.
  • 5宫新保,周希朗,胡光锐.基于免疫进化算法的径向基函数网络[J].上海交通大学学报,2003,37(10):1641-1644. 被引量:10

二级参考文献7

  • 1Bernard Mulgrew. Applying radial basis functions[J]. IEEE Signal Processing Magazine, 1996, 13(2) :50--65.
  • 2Licheng Jiao, Lei Wang. A novel genetic algorithm based on immunity [J. IEEE Trans on Systems,M an and Cybernetics, 2000,30 (5) : 552 -- 561.
  • 3Moody J, Darken C. Fast learning in networks of locally-turned processing units[J]. Neural Computation, 1989, 6(1):281-294.
  • 4Karayiannis N B, Mi G W. Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques[J].IEEE Trans on Neural Networks, 1997,8(6) : 1492-1506.
  • 5Yao Xin, Liu Yong. New evolutionary system for evolving artifical neural networksp[J]. IEEE Trans on Neural Networks, 1997, 8(3) :694-713.
  • 6Broomhead D S, Lowe D. Multivariable functional interpolation and adaptive networks[J]. Complex System, 1988, 11(2):321--355.
  • 7黄春琳,周一宇.模拟调制信号的神经网络识别方法[J].电子对抗,1998(3):13-18. 被引量:3

共引文献9

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部