摘要
本文从数值计算和实验两方面对方柱绕流进行了研究。我们用有限分析方法计算了流场的流线分布:涡量分布和速度分布的曲线以及方柱后方的再附区域长度随Reynolds数变化的曲线,并同绕后阶梯流动的计算结果进行了比较。我们用电解沉淀法对方柱前方的死水区,方柱上方出现的分离剪切层及方柱后方分离剪切层的再附等流动现象进行了显示,并将数值计算结果和实验结果做了比较。二者在定性上是吻合的。
In this paper, the numerical computation and the experiment on the flow around a two-dimensional rectangular obstacle in a channel have been studied. We employed the finite analytic method to evaluate the stream function, vorticity function and the length of reattachment in the back of the rectangular obstacle with Reynolds number, and compared with the computation results of the flow over a rearward-facing step. We employed a method of electrodeposit of a tin solder wire in a to wing water tank to visualize the flow pattern around the obstacle and compared the numerical computation with the experiment results. The numerical computation and the experiment results are identical qualitatively.
出处
《水动力学研究与进展(A辑)》
CSCD
北大核心
1992年第A12期493-499,共7页
Chinese Journal of Hydrodynamics
关键词
绕流
数值计算
有限元法
finite analytic method, length of reattachment, stream function.