摘要
按照文献[5]的计算模式,运用解析函数的Riemann-Hilbert混合边值问题理论,对重力场中的二维空腔流动进行了数值模拟。给出了Fr数、空腔压力坝面坡度与空腔长度的关系曲线,对跌水和空蚀突体绕流进行了数值模拟和验证。运用本文方法进行数值求解时,只需在流场边界上进行离散处理,数值求解具有收敛速度快、精度高、边界适应能力强、对初值要求不高等优点。
According to the calculational model in Reference〔5〕, the gravity-affected two-dimensional cavity flow is calculated mumerically by using Riemann-Hilbert mixed boundary technique of analytical function. Curves of the cavity length as a function of Froude number, cavity pressure and channel bottom slope are presented. When the present method is used to calculate the cavity flow, only the boundary of the flow domain reeds to be discretized. The numerical procedure herein has the advantages in fast convergence, high accuracy and less calculational effort in dealing with complicated boundary problems. The numerical results agree well with measured data.
出处
《水动力学研究与进展(A辑)》
CSCD
北大核心
1992年第A12期543-551,共9页
Chinese Journal of Hydrodynamics
关键词
混合边值问题
空腔流动
数值模拟
cavity flow, boundary integral equation, cavity length, free overfall flow.