期刊文献+

卡尔曼滤波在多维AR序列建模中的应用 被引量:12

APPLICATION OF KALMAN FILTER IN MODELING MULTI-DIMENSIONAL AR SERIES
在线阅读 下载PDF
导出
摘要 作为时间序列模型的一种 ,AR模型由于参数估计和定阶简单而广泛应用于系统辨识。在多维AR序列的最小二乘建模的基础上 ,结合卡尔曼滤波算法 ,推导了应用卡尔曼滤波技术的多维AR序列参数估计方法以及加入衰减因子后的卡尔曼滤波算法。该算法不需要保存历史数据 ,在得到新的“观测”数据后可以对AR模型的估计参数进行实时改正。在确定AR模型阶数时 ,提出了快速F检验法 ,大大减少了建模过程中的计算工作量 。 AR series, as one of time series models,is applied broadly in system identification because its parameter estimation and rank decision are simple.On the basis of multi dimension AR series modeled by least square criterion and the Kalman filtering technique,the method for estimation of parameters of multi dimension AR series by Kalman filter is developed in this paper. The method with attenuation foctor is also derived. It is not necessary to keep the historical data for these methods.Thanks to application of Kalman fileter, the estimated parameters of AR series can be updated real time by newly observed data.The Fast F test method proposed in this paper can decrease much modeling calculation work in the decision of rank of AR series and have an applicable value.
作者 张朝玉
出处 《大地测量与地球动力学》 CSCD 2003年第2期92-95,共4页 Journal of Geodesy and Geodynamics
基金 教育部地球空间环境与大地测量重点实验室基金资助项目 ( 0 2 -0 9-0 1)
关键词 卡尔曼滤波 AR序列 动态数据处理 F检验 Kalman filter, AR series, dynamic data processing, F test
  • 相关文献

参考文献4

  • 1Wu Jinpei.Applications of time series analysis[M].Chang sha:Hunan Science & Technology Press,1989,57-58(in Chinese)
  • 2Li Qinghai and Tao Benzao. Theory of probability and statistics and its application in surveying[M]. Beijing: Publishing House of Surveying & Mapping, 1984. 43-48.(in Chinese)
  • 3Zhang Chaoyu.Multi-dimensional AR series modeled by least squares criterion[J].Geomatics and Information Sciences of Wuhan University,2002,27(4):377-381.(in Chinese)
  • 4Wang Huiwen. Partial least square regression method with applications[M]. Beijing:Defence Industry Press 1999,51-52.(in Chinese)

同被引文献81

引证文献12

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部