期刊文献+

基于WWW缓冲的用户实时二维兴趣模型 被引量:6

WWW Cache Based Model of Users’Real Time Two-Dimensions Interest
在线阅读 下载PDF
导出
摘要 WWW缓冲技术通过将受欢迎的网页放到与客户较近的地方来提高用户存取这些网页的速度.如何有效充分地利用WWW缓冲中的信息,其关键是建立一个合适的用户兴趣模型和构造合适的兴趣挖掘算法.简单兴趣模型通过(词条,权重)来刻画兴趣.它没有深入挖掘这些兴趣之间的关联关系,因而在表达用户兴趣的时候,不能实现兴趣之间的关联.该文在充分分析WWW缓冲模型的基础上提出了实时二维兴趣模型.该模型的实时性可以保证挖掘出来的用户兴趣更能反映当前用户的兴趣状态;该模型引入的二维概念充分地考虑了用户兴趣之间的递推关系.该模型不是简单兴趣模型的简单扩充,而是模型和相关算法的全面改进.文章给出了二维兴趣模型的存储、二维兴趣的有效计算和二维兴趣的实时更新的相关方法. The popular WWW pages are stored in the users'places.By this WWW Cache technology,the browsers can fetch these pages more rapidly.The information in the WWW Cache shows the users'recent interest.The users'interest can be widely used,for example,customizing the WWW pages,filtering the information,pre-fetching the information,and so on.How to use the information in the WWW Cache effectively lies in how to build an adaptive user interest model and how to construct an adaptive algorithm for interest mining.In simple interest model,the interest can be specialized by a tuple(term,weight),and the association relations are not mined,so the interest cannot be associated when expressing the users'interest.Based on analyzing the WWW Cache model,we bring forward a real time two-dimensional interest model.The property of real time in this model can show the users'current interest states.And the inferential relations between interests are well considered in the model.This model is not the simple extension of the simple interest model,but the round improvement of the model and its related algorithm.In this model,we use rough set method to store the data more effectively,and we use incremental algorithm to compute the interest effectively and to update the interest in real time.
作者 张卫丰 徐宝文 ZHANG Wei-Feng;XU Bao-Wen(Department of Computer Science and Engineering.Southeast University,Nanjing 210096;Department of Computer Science and Engineering.Nanjing University of Posts and Telecommunications,Nanjing 210003;Jiangsu Institute of Software Quality,Nanjing 210096;State Key Laboratory of Softtware Engineering,Wuhan University,Wuhan 430072)
出处 《计算机学报》 EI CSCD 北大核心 2004年第4期461-470,共10页 Chinese Journal of Computers
基金 国家自然科学基金(60073012) 国家“九七三”重点基础研究发展规划项目基金(2002CB312000) 国家预研基金 江苏省自然科学基金(BK2001004) 江苏省科技攻关项目基金(BE2001025) 教育部跨世纪优秀人才基金 教育部博士点基金 江苏省三三三人才基金 高等学校重点实验室访问学者基金 武汉大学软件工程国家重点实验室开放基金 南京大学软件新技术国家重点实验室基金 苏州大学江苏省计算机信息处理技术重点实验室基金等资助
关键词 WWW 互联网 兴趣模型 数据挖掘 高速缓存 W W W Internet Interest model data mining cache
  • 相关文献

参考文献23

  • 1Jia Wang. A survey of WWW caching schemes for the internet. ACM Computer Communication Review, 1999, 29(5):36~46
  • 2Cunha C., Jaccoud C.F.B.. Determining www user's next access and its application to pre-fetching. In: Proceedings of ISCC'97,the 2nd IEEE Symposium on Computers and Communications, Alexandria, Egypt, 1997,6~11
  • 3Bestavros A., Cunha C.. A prefetching protocol using client speculation for the WWW. Boston University, Department of Computer Science, Boston, MA 02215: Technical Report: TR-95-011, 1995
  • 4Kroeger T.M., Long D.D., Mogul J.C.. Exploring the bounds of WWW latency reduction from caching and prefetching. In: Proceedings of the USENIX Symposium on Internet Technologies and Systems (USITS), Monterey, CA, 1997,13~22
  • 5Barish G., Obraczka K.. World wide WWW caching: trends and techniques. IEEE Communications Magazine Internet Technology Series, 2000, 38(5):178~184
  • 6Xu Bao-Wen, Zhang Wei-Feng, Chu W.C., Yang Hong-Ji. Application of data mining in WWW pre-fetching. In: Proceedings of IEEE MSE2000, TaiWan, 2000,372~377
  • 7徐宝文,张卫丰.数据挖掘技术在Web预取中的应用研究[J].计算机学报,2001,24(4):430-436. 被引量:116
  • 8Brin S., Page L.. The anatomy of a large-scale hypertextual WWW search engine. In: Proceedings of 7th world wide WWW Conference(WWW'98), Brisbane, Australia, 1998,107~117
  • 9韩家炜,孟小峰,王静,李盛恩.Web挖掘研究[J].计算机研究与发展,2001,38(4):405-414. 被引量:356
  • 10Zhang Wei-Feng, Xu Bao-Wen, Chu W.C., Yang Hong-Ji. Data mining algorithms for WWW pre-fetching. In: Proceedings of the 1st International Conference on WWW Information Systems Engineering(WISE'2000), Hong Kong, China, 2000, 34~38

二级参考文献26

  • 1姚郑,高文.面向Agent的程序设计风范[J].计算机科学,1995,22(6):7-11. 被引量:13
  • 2[1]The WWW Common Gateway Interface Version 1.1.Communications of ACM, 1986, 29(8):711-721
  • 3[2]Sun Microsystems. JDK 1.1.6 Document. http://www.javasoft.com/products/jdk/1. 1/docs/index.html
  • 4[3]ActiveX. http://www.folkarts.com/journals/activex
  • 5李水平,小型微型计算机系统,1998年,19卷,4期,74页
  • 6Salton G,Commun ACM,1975年,18卷,11期,613页
  • 7Han J,Data Mining:Concepts and Techniques,2000年
  • 8Wang K,Proc of VLDB'97,1999年,363页
  • 9Zaiane O R,Proc Int Workshop Web Information and Data Management(WIDM'98),1998年,9页
  • 10Mobasher B,Tech Rep:TR96 0 5 0,1996年

共引文献627

同被引文献27

  • 1张卫丰,徐宝文,周晓宇,许蕾,李东.元搜索引擎结果生成技术研究[J].小型微型计算机系统,2003,24(1):34-37. 被引量:7
  • 2顾益军,樊孝忠,王建华,汪涛,黄维金.中文停用词表的自动选取[J].北京理工大学学报,2005,25(4):337-340. 被引量:37
  • 3张瑜,袁方.基于用户兴趣的个性化信息检索方法[J].山东大学学报(理学版),2006,41(3):128-133. 被引量:8
  • 4Rovai A P.Sense of community,perceived cognitive learning,and persistence in asynchronous learning networks.Internet and Higher Education,2002;5(4):319-332
  • 5Salton G.Developments in automatic text retrieval.Science,1991;253(5023):974-979
  • 6邵志峰,李荣陆,胡运发.基于中图分类法的用户兴趣模型研究[J].计算机应用与软件,2007,24(8):85-86. 被引量:9
  • 7PAZZANIM,BILLSUSD.Learning and revising user profiles:the identification of interesting Web sites[J].Machine Learning,1997,27(3):313-331.
  • 8SUGIYAMA K,HATANO K,YOSHIKAWA M.Adaptive Web search based on user profile constructed without any effort from users[C]//Proc 13th International Conference on World Wide Web.USA:ACM Press,2004:675-684.
  • 9ZAMIR O E.Clustering Web documents:a phrase-based method for grouping search engine results[ D ].Univ of Washington,1999.
  • 10SHAW M W,BURGIN R,HOWELL P.Performance standards and evaluations in IR test collections:cluster-based retrieval models[ J].Info Processing & Management,1997,33(1):15-36.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部