期刊文献+

THE LONG TIME BEHAVIORS OF NON-AUTONOMOUS EVOLUTION SYSTEM DESCRIBING GEOPHYSICAL FLOW WITHIN THE EARTH

THE LONG TIME BEHAVIORS OF NON-AUTONOMOUS EVOLUTION SYSTEM DESCRIBING GEOPHYSICAL FLOW WITHIN THE EARTH
原文传递
导出
摘要 In this paper,the long time behaviors of non-autonomous evolution system describing geophysical flow within the earth are studied.The uniqueness and existence of the solution to the evolution system and the existence of uniform attractor are proven.Moreover,the upper bounds of the uniform attractor's hausdorff and Fractal dimensions are obtained.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2002年第3期282-294,共13页 系统科学与复杂性学报(英文版)
基金 This research is supported by the Special Funds for Major State Basic Research Projects(G1999032801) by the Natural Science Foundation of China with Grant No.19671067 and 10001028.
关键词 Non-autonomous evolution system geophysical flow uniform attractor hausdorff and fractal dimension. 气候变化 地球物理 地球大气 非自激演变系统
  • 相关文献

参考文献18

  • 1R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag,New York, 1988.
  • 2A. V. Babin, M. I. Vishik, Attractors of Evolution Equations, North-Holland, 1992.
  • 3A. V. Babin , The attractor of Navier-Stokes system in an unbounded channel-like domains, J.Dynamics and Diff. Equ., 1992, 4(4): 555-584.
  • 4F. Abergel, Attractors for a Navier-Stokes flow in an unbounded domain, Math. Mod. and Num.Anal., 1989, 23(3): 359-370.
  • 5Xiaqi Ding, Yonghui Wu, Global attractor of Navier-Stokes equations on two-dimensional strip-like domains and estimates of its dimensions, Acta Mathematica Scientia, 1996, 16(2): 125-135.
  • 6Xiaqi Ding, Yonghui Wu, The finite dimensional behaviors of Navier-Stokes equations with linear dampness on the whole R2 space, Acta Mathematica Applicata Sinica, 1997, 20(4): 509-519.
  • 7R. Temam, Navier-Stokes Equations and Nonlinear Analysis, SIAM, Philadelphia, 1983.
  • 8P. Constantin, C. Foias, Navier-Stokes Equations, Univ. Chicago Press, Chicago, 1989.
  • 9J. Hale, Asymptotic Behaviors of Dissipative Systems, Amer. Math. Soc. Providence RI. 1988.
  • 10G. Raugel, and G. Sell, Navier-Stokes Equations in Thin 3D Domains: global regularity of solutions,IMA Preprint Series 662, Univ of Minnesota, 1990.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部