期刊文献+

强化学习理论在机器人应用中的几个关键问题探讨 被引量:2

Several Crux Problems of Reinforcement Learning Application in Robotics
在线阅读 下载PDF
导出
摘要 文章在简单概述强化学习理论的基础上,对强化学习在实际机器人应用中经常遇到的连续状态-动作空间、信度分配、探索和利用的平衡、不完整信息等关键性问题进行了讨论,给出了一些常用的解决方法,以期为相关的研究和应用提供一个参考。 This paper briefly reviews reinforcement learning theory and its main algorithms firstly,then concentrates on several crux problems we may encounter when applying reinforcement learning in autonomous mobile robots,such as continuous state -action space,credit assignment problem,balance of exploration and exploitation,partially observable Markov decision problem and et al.It not only analyzes these problems but also gives out some methods to solve them.We hope it can be a reference for related work.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第4期69-71,96,共4页 Computer Engineering and Applications
关键词 强化学习 自主机器人 多机器人系统 Reinforcement learning,Autonomous mobile robots,Multi-robots system
  • 相关文献

参考文献13

  • 1[1]Sutton R S.Learning to Predict by the Methods of Temporal Difference[J].Machine Learning, 1988; (3): 9~44
  • 2[2]Watkins J C H,Dayan Peter. Q-Learning[J].Machine Learning,1992;(8):279~292
  • 3[3]Barto Andrew G,Sutton Richard S et al. Neural-like Adaptive Elements That can Solve Difficult Learning Control Problem[J].IEEE Trans on S M and C,1983;13(5):843~846
  • 4[4]Yung N H C,Cang Ye. An Intelligent Mobile Vehicle Navigator Based on Fuzzy Logic and Reinforcement Learning[J].IEEE Trans on Sys Man and Cyber,Part B,1999;29(2):314~321
  • 5[5]F Fernandz,L E Parker. Learning in Large Cooperative Multi-robot Domains[J].Intemational J of Robot and Automation,2001; (4) :217~226
  • 6[6]Touzet C.Neural Reinforcement Learning for Behavior Synthesis[J].Robotics and Autonomous System,Special Issue on learning robots:The New Wave,1997;22:251~281
  • 7[7]Smith,Andrew James. Applications of the Self-organising Map to Reinforcement Learning[J].Neural Networks,2002; 15:1107~1124
  • 8[8]Samejima K,Omori T.Adaptive Internal State Space Construction Method for Reinforcement Learning of a Real-world Agent[J].Neural Networks, 1999; 12:1143~1155
  • 9[9]Handa H et al. An Incremental State-segmentation Method for Reinforcement Learning Using ART neural network[C].In:26th Annual Conference of the IEEE Industrial Electronics Society,2000;4:2732~2737
  • 10[10]Gullapalli V.A Stochastic Reinforcement Learning Algorithm for Learning Real-valued Function[J].Neural Networks, 1990; (3) :671~692

同被引文献42

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部