期刊文献+

利用主元方法进行传感器故障检测的行为分析 被引量:22

Behavior Analysis of Sensor Fault Detection Using PCA Approach
在线阅读 下载PDF
导出
摘要 主元分析方法 (PCA)是基于多元统计分析的过程监测和故障诊断手段。在假设过程只存在传感器故障的情况下 ,系统地分析了PCA方法在传感器典型故障下的检测行为。首先导出了HotellingT2 和Q两个检测统计量在传感器不同故障下的变化关系和规律 ,然后从理论上给出了每个传感器故障的可检测性条件。 Principle component analysis is an effective multivariate statistical method for process monitoring and fault diagnosis. In this paper, a systematical analysis of detection behaviors of PCA for various sensor faults is presented. The characters of two basic detection statistics, Hotelling T 2 and Q are analyzed under different sensor fault types. Then fault detectablity for every individual sensor is given. The validity of analytical results is demonstrated by a real-world application to a boiler system.
出处 《传感技术学报》 CAS CSCD 2003年第4期419-423,共5页 Chinese Journal of Sensors and Actuators
关键词 主元分析方法 PCA 传感器 故障检测 过程监测 principle component analysis sensor fault detection
  • 相关文献

参考文献5

  • 1[1]Dunia R, Qin S J. Joint diagnosis of process and sensor faults using principle component analysis[J]. Control Engineering Practice, 1998, 6:457-469.
  • 2[2]Qin S J, Li W H. Detection and identification of faulty sensors with maximum sensitivity[C]. In:Proceedings of American Control Conference, California, 1999,613-617.
  • 3陆宁云,杨英华,王福利.基于迭代主成分分析的过程监测方法的研究与实现[J].控制与决策,2002,17(2):215-218. 被引量:9
  • 4[4]Chiang L.H., Russell E.L., and Braatz R.D. Fault detection and diagnosis in industrial systems[M]. London: Springer, 2000.
  • 5[5]Jackson J.E. A User's guide to principle components[M]. Wiley, New York, 1991.

共引文献8

同被引文献142

引证文献22

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部